
SOFTWARE
ENGINEERING:

METHODS, MODELING,
AND TEACHING

VOLUME # 4

COMPILATORS
Carlos Mario Zapata Jaramillo

Claudia Elena Durango Vanegas
Wilder Perdomo Charry

SOFTWARE
ENGINEERING:

METHODS, MODELING,
AND TEACHING

VOLUME # 4

Software engineering : methods, modeling, and teaching, Volume # 4/ Carlos Mario Zapata
Jaramillo, Claudia Elena Durango Vanegas, Wilder Perdomo Charry, compiladores. – Bogotá :
Editorial Bonaventuriana, 2017.

465 páginas. ; Ilustraciones a color.
Incluye referencias bibliográficas.
ISBN: 978-958-8928-49-4

1. Ingeniería de software. – 2. Análisis de sistemas. – 3. Programación (Computadores electróni-
cos). – 4. Tecnología educativa. – I. Zapata Jaramillo, Carlos Mario. – II. Durango Vanegas, Claudia
Elena – III. Perdomo Charry, Wilder.

CDD. 005.1

Software Engineering:
Methods, Modeling, and Teaching, Volume # 4

© Universidad de San Buenaventura
© Universidad Nacional de Colombia

© Editorial Bonaventuriana, 2017
Universidad de San Buenaventura, sede Bogotá

Carrera 8 H N.º 172-20,
PBX: 57 (1) 667 1090
www.usbbog.edu.co
Bogotá - Colombia

Rector: Fray José Wilson Téllez Casas, o.f.m.
Coordinador editorial: Pablo Enrique Sanches Ramírez

Jefe Unidad de Comunicaciones y Protocolo: Luis Alfredo Téllez Casas
Diseño y diagramación: Luis Orlando Ferrucho Branz

Aviso Legal
Los editores y los autores son responsables del contenido de la presente obra

Prohibida la reproducción total o parcial de este libro por cualquier medio,sin permiso escrito
de la Editorial Bonaventuriana

Derechos reservados de la Universidad de San Buenaventura

ISBN: 978-958-8928-49-4
Depósito legal: se da cumplimiento a lo estipulado en la Ley 44 de 1993,

Decreto 460 de 1995 y Decreto 358 de 2000.

Impreso en Colombia - Printed in Colombia.

EDITORIAL
BONAVENTURIANA

SOFTWARE
ENGINEERING:

METHODS, MODELING,
AND TEACHING

VOLUME # 4

COMPILATORS:
Carlos Mario Zapata Jaramillo

Profesor Titular
Universidad Nacional de Colombia Sede Medellín

correo: cmzapata@unal.edu.co

Claudia Elena Durango Vanegas
Profesora Investigadora

Universidad de San Buenaventura, seccional Medellín
correo: claudia.durango@usbmed.edu.co

Wilder Perdomo Charry
Profesor Investigador

Universidad de San Buenaventura, seccional Medellín
correo: wilder.perdomo@usbmed.edu.co

Table of Content

5

PREFACE.. 8

PART 1 – METHODS

Chapter # 1
Template for describing patterns of interaction and user experience............................11

Chapter # 2
Using ISO/IEC 29110 Deployment Package to construct
educational video games in software engineering.. 27

Chapter # 3
Associating quality measures to the alpha states of the SEMAT kernel........................ 41

Chapter # 4
Computational tool for a communication system
for persons with tetraplegia using an eye-tracking sensor.. 55

Chapter # 5
Driving Security Aware Android Application Development
Based on Malware Analysis Data Visualization...77

Chapter # 6
A Methodology to Assist Novice Engineers to
Produce Quality Research and Development Projects...98

Chapter # 7
Improving Privacy Notices Usability Applying Cognitive Ergonomics
in Interaction Patterns.. 122

Chapter # 8
Analysis methodology for quality source code in software development................. 143

Chapter # 9
The importance of functional and data requirements
in supporting the adoption process of EHRS...161

Chapter # 10
Towards an Enterprise Architecture framework for an IT SME:
Miracle Business Network... 175

6 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Chapter # 11
User-oriented application for source code metrics definition
and extraction based on a metrics framework... 193

Chapter # 12
PMBOK and Essence: Partners for IoT Projects ..211

PART 2 - MODELING

Chapter # 13
Automotive Safety Requirements Specification...225

Chapter # 14
Conceptual synthesis of practice as a
theoretical construct in Software Engineering.. 244

Chapter # 15
Facilitating the development of Collaborative Applications
with the MVC Architectural Pattern.. 268

Chapter # 16
Creating an Estimation Model from Functional Size
Approximation Using the EPCU Approximation
Approach for COSMIC (ISO 19761)...291

Chapter # 17
A Representation Based in SEMAT Kernel of the Test
Planning Process According to ISO/IEC/IEEE 29119-2 Standard....................................... 311

Chapter # 18
A KAOS representation by using the SEMAT kernel..322

Chapter # 19
QUACOP: An approach to Increase the Quality
of Artifacts considered in a Project Planning Process..338

Chapter # 20
New relationships of the Risk alpha with the Semat Essence kernel...........................352

PART 3 - TEACHING

Chapter # 21
Towards a Compilation of Problems in the Adoption
of Agile-Scrum Methodologies: A Systematic Literature Review..................................... 364

7TABLE OF CONTENT

Chapter # 22
An Instructional Proposal for study of concepts on
Software Engineering assisted by Ludic Virtual Learning Environments................... 390

Chapter # 23
Augmented Reality Applied in the Museum of Memory of Tlaxcala..............................410

Chapter # 24
Promoting Software Engineering Concepts
to Children through a Serious Game...422

Chapter # 25
Representation of teaching and learning practices
about embedded systems using a SEMAT kernel extension..443

Preface

9PREFACE

Software Engineering in Latin America is growing stronger. Too much work has been de-
voted to this discipline and elsewhere we have evidence about this fact. Methods, mo-
deling, and teaching are ways to classify the work Latin American researchers are doing:
the fourth volume of this book is now full of the effort made in our discipline. Since the
first volume of this book, we are promoting new ideas coming from researchers about
software engineering. In this case, we have our three common knowledge areas. The na-
mes of the authors are probably different, but the intention is the same: promoting the
research and practice of software engineering in Latin America.

This book should be read by all audiences interested in software engineering, from stu-
dents to real-world practitioners. Each chapter is self-contained, but—as a reader—you
need a minimum background about each topic. We strongly recommend you to read the
introduction of each chapter before starting to go deep in the contents, just to be sure
you have enough background about the topic you are reading. When you feel sure about
it, you can proceed to the detailed information of the chapter.

We organized the chapters in the same way we do in the previous three volumes: Part one is
devoted to methods, Part two is devoted to modeling, and Part three is devoted to teaching.

The first part—methods—includes studies about: usability and accessibility made by using
interaction patterns; international standards like ISO, SEMAT, and PMBOK; malware detec-
tors; automated research assistants; source code inspections by using metrics frameworks;
electronic health record systems; and enterprise architecture frameworks.

The second part—modeling—comprises studies about: safety requirements specifica-
tions; practices and risk alpha as theoretical constructs; MVC patterns; functional size
estimation; test planning and KAOS based on the SEMAT kernel; and data quality.

The third part—teaching—is related to: agile methods; software engineering concepts
by using serious games and virtual learning environments; augmented reality; and em-
bedded systems by using the SEMAT kernel.

As you can see, we have full coverage of software engineering topics, so you can have a
landscape vision about the software engineering research in Latin America or you can
go deeper in the topic you select. Whatever reason you have for reading this book, we
promise you will be rewarded for your reading.

Carlos M. Zapata, Claudia E. Durango, Wilder Perdomo

Compilators

PART 1
METHODS

11

Chapter # 1
Template for describing

patterns of interaction and user
experience

1.	 Introduction

Interaction patterns represent a solution to various problems of interaction design, es-
pecially those looking to accelerate the development, allowing implement effective so-
lutions to common problems by avoiding the need to evaluate and re-evaluate every
aspect of a project [1].

These patterns [2] are directly related to the representation of information according
to user needs, and this refers to the efficiency and user satisfaction in their experience
with software products.

A pattern language is defined as the specification of a number of elements (patterns)
and their relationships (with other patterns) so that it managed to describe good solu-
tions to the various problems that arise in a specific [3] context.

This work was performed as part of the development of a research project that aims to
define a pattern language interaction special focus on the user experience. The main ob-
jective is to define a template for describing patterns of interaction that will be designed.

In the definition of the template describing patterns, it has conducted a review of the
structure definition of patterns of interaction proposed by different authors, in order to
analyze the proposed features in these templates to identify which of these features to

Yuliana Puerta Cruz
Universidad del Cauca
Popayán-Colombia
Fundación Universitaria
Tecnológico Comfenalco
Cartagena-Colombia
puertacruz@gmail.com

Cesar A. Collazos
Universidad del Cauca
Popayán -Colombia
ccollazo@unicauca.edu.co

Josefina Guerrero García,
Juan González Calleros
Benemerita Universidad
de Puebla
Puebla- México
joseguga01@gmail.com

12 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

consider when designing a pattern language interaction. In addition, it has designed and
implemented a survey instrument among the community of academic and professional
experts in the field of interaction patterns to corroborate the findings of conceptual
analysis.

They have also reviewed aspects that define the user experience (UX), for which have
been considered proposals of different authors such as: [4], the Panel Morville [5] and
mainly review in [6]. These facets have been revised considering that the main objective
of this work focuses on ensuring the scope of software products with good levels of user
experience.

This chapter is organized in the following structure: section 2 shows a state of the art
review of the concept of interaction patterns and languages, as well as the main struc-
tures for describing patterns of interaction. Section 3 the instrument used to collect
information in the expert community patterns and an analysis of the survey results,
section 4 presents the template selected and the criteria under which the selection was
described. Finally, conclusions and future work.

2.	 Patterns of interaction

Patterns of interaction [7] are also known as patterns HCI or patterns design user interfa-
ces, in this context it spoke of patterns of interaction, these have to do with the represen-
tation of information according to user needs, and results in satisfaction, efficiency and
acceptability as perceived by users to use the software products they require.

According to [8] Alexander’s original ideas it has been possible to move the process of
interaction, thus interaction patterns help to design user-friendly systems for people.

UI design patterns are solutions that solve common design problems recurring. Design
patterns are the standard benchmarks for user interface designer.

A pattern language is a network of closely intertwined patterns defining a process to syste-
matically solve a series of problems related and interdependent development of software
[9].

In [7] the patterns of interaction are defined as a proven solution for professional inte-
raction design, usability and user experience that provides best practices for designing
human interaction computer to any of the phases the design, engineering, evaluation or
use of interactive systems, generally characterized by the user interface.

13CHAPTER # 1 - TEMPLATE FOR DESCRIBING PATTERNS OF INTERACTION AND USER EXPERIENCE

Pattern languages are structured to describe good design practices containing a collec-
tion of interrelated standards that aim to disseminate the body of knowledge contained
method. Describe the key features of effective solutions to fulfill various design objec-
tives [10].

In [11] a pattern language is defined as “The specification of a number of elements (pat-
terns) and their relationships (with other patterns) so that allow us to describe good
solutions to the various problems that arise in a specific context.

Pattern languages have three essential elements or activities, such as the standard de-
finition patterns, grouping patterns and description of relationships between patterns.
The standard definition refers to the definition of a structure describing patterns, ne-
cessary to characterize patterns. Grouping patterns must be made from a categorization
that allows organize them according to certain characteristics defined. While relations-
hips should be described using some type of mapping or diagram [7].

Considering that in the future, since this proposal will develop a language of patterns
of interaction –oriented user experience, is assumed to define a structure for describing
patterns.

2.1	 Describing Patterns of Interaction

Interaction patterns must have a structure design, the state of the art reveals various
proposals for these structures, which should facilitate communication between desig-
ners, and almost all contain an important set of content suggested by Gamma [11]. Here
we review some of the structures used by various authors. Table 1 shows the elements
proposed by Jennifer Tidwell [12].

Table 1. Description of Patterns Tidwell [12]

Name: Name by which the pattern is identified.
Problem: This item describes the situation that the pattern will solve.
Context: User features and characteristics of the tasks to be performed.
Forces: How they influence different aspects of the problem.
Solution: Clear description of the proposed solution.
Consequences Describes the results of applying the pattern.
Usability
principles:

Describes the principles or ergonomic criteria on which the employer is
based.

Examples: An illustrative example of a successful solution.

14 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Another important proposal of pattern languages is that of Van Welie [8, 1], items that
are included in his proposal are listed below in Table 2.

Table 2. Description of patterns van welie [1]

Name: Pattern title, which must be representative, clear and concise concept
you want to communicate.

Context: A description of the situation in which the pattern can be used, what are
the characteristics of the context, in terms of tasks, the user.

Forces: Contextual aspects that need to be optimized.

Solution: Clear description of the proposed solution.

Consequences Describes the results of applying the pattern.

Examples: An illustrative example of a successful solution.

Table 3 describes the proposal of Vanderdonckt [13] for describing patterns of interaction.

Table 3. Description of Patterns Vanderdonckt [13]

Problem It describes the situation that the pattern will solve.

Context Characteristics of the context in which the problem occurs are described

Forces Aspects that influence with great importance in the situation.

Solution Description of the proposed solution.

Comments Additional information that enables implementation of pattern

Van Duyne [14] proposes the use of six key features or elements which are described in
Table 4.

Table 4. Description of patterns Van Duyne [14]

Title Pattern It refers to the name of the pattern.

Background Context pattern describes the relationship of this with other patterns.

Forces Describes in more detail people, tasks, technology and society affect
design problems.

Solution: It shows how to solve the problem, provide
an outline of how to solve the problem

Consequence Describes the results of applying the pattern.

Other Patterns Other patterns that help to complete this pattern are recommended

The template description of the Master Detail Patterns [15] is described in Table 5.

15CHAPTER # 1 - TEMPLATE FOR DESCRIBING PATTERNS OF INTERACTION AND USER EXPERIENCE

Table 5. Description of Patterns Master Detail [15]

Pattern Name: It refers to how the pattern will be appointed.
Also known as: Another name for the pattern.
Classification: It represents the type of pattern:
Motivation or Problem: What is the sample scenario to implement this pattern?
Solution: What problems are solved patterns?
Constraint: What restrictions are required?
Forces: Advantages and strengths of using
Weakness: Disadvantages or limitations to use this patterns.
Justification: What is the story behind this pattern, because it works?
Applicability or content: When this pattern is applied?

Context of use: What are the category of user, the environment and the platform that
this pattern can apply?

Structure What are the class hierarchy diagrams for objects in this pattern?
Competitor: What are the objects participating in this pattern?
Consequences: What are the advantages and disadvantages of using this pattern?
Implementation: What techniques or problems arise in the application of these patterns?
Know uses: What are some examples of real systems using this pattern?
Related Patterns: What other models in this collection are related to pattern this pattern?

Table 6 shows a format for documenting patterns in order to minimize communication
problems between pattern designers and software developers, allowing include the con-
cept of pattern language that seeks to establish relationships between patterns [7].

Table 6. Description of Patterns Seffah [7]

Pattern Identification
Pattern Name It describes how the pattern will be Called
Alias: It describes what the employer receives
Author: Who designed the pattern?
Category: Pattern Classification
Keywords: Allowing be found

Related Patterns: They can be (Super ordinated, Subordinated Brothers / Neighbors,
Competitors)

Context of Use
User: Categories of users, people, profiles, etc.

Tasks: Tasks are structured hierarchically. All sub-tasks must originate
from a root.

This table continues on the following page ––––––>

16 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Platform Capacity: Information should be organized in devices independently.
Problem
It gives an idea of the problem that the pattern solves. This could be represented as a question
Forces
The forces describe aspects of influence of the problem and the solution. This aspect can be
represented in a list.
Solution
It gives a state of the solution to the problem including the justification of the solution. This
should also provide references for further understanding
Implementation
Structure This is a high level of abstraction, by visual modeling notation
Strategy It includes examples, figures, and sample codes.
Consequences
Consequences and results of using the pattern. This can be described by a list of metrics,
criteria or factors usability.

On the other hand, Table 7, a table comparing features or elements considered in the
definition of the proposed patterns and so far shown reviewed here. It can be seen that
all the authors consider the basic aspects that define a pattern such as the problem, the
context and the solution. You can identify other issues of great importance such as the
name of the pattern, the forces and examples.

Table 7. Relationship Characteristics Authors

Characteristics
Authors

Tydwell Van Welie Vanderdonckt Van Duyne Master Detail Seffah
Name X X X X X
Alias X X
Author X
Classification X X
Problem X X X X
Keywords X
Solution X X X X X X
Constraints X
Forces X X X X X X
Weakness X
Justification X
Applicability X

This table continues on the following page ––––––>

17CHAPTER # 1 - TEMPLATE FOR DESCRIBING PATTERNS OF INTERACTION AND USER EXPERIENCE

Characteristics
Authors

Tydwell Van Welie Vanderdonckt Van Duyne Master Detail Seffah
Context X X X X X X
Consequences X X X X X X
Structure X X
Participants X
Contributors
Implementation X X
Example X X
Usability
principles X

Related Patterns X X X X

This comparison reveals that the proposals made by Seffah [7] and Master Detail [14]
include aspects related to the implementation of standards, coming to consider issues
related to structures and implementation strategies. These features are useful when
trying to implement the patterns. These two proposals mostly consider the features list
above, proving to be the most characteristic feature.

This review identified some important features in describing patterns of interaction.
However, in order to corroborate their relevance from the view of other thematic experts
in interaction patterns, we designed and implemented a survey form, which is described
in greater detail in session 3.

3.	 User experience

Over time different authors have conceptualized the user experience, however, the defi-
nition of [16] as “Perceptions and responses or resulting from the use or anticipated use
of a product, system or service “ is highlighted.

Furthermore, the definition proposed in [17], where user experience is conceptualized
as “The feeling, feeling, emotional response, assessment and user satisfaction regarding
a product, a result of the phenomenon of interaction with the product and highlights
interaction with your provider.”

In [18], as mentioned earlier a review of the main facets that make up the UX, in terms
of design and evaluation of products for products with good levels of user experience,
provides this proposal is based on the work of different authors (see Figure 1).

18 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Figure 1. Facets of user experience

The communicability and multiculturalism are transverse to the implementation of
other facets displayed vertically aspects. Some of these important aspects are defined
to achieve satisfactory user experiences:

3.1	 Usability

Usability or quality of use, is an anglicized which means ease of use, and whose formal
definition refers to the degree of effectiveness, efficiency and satisfaction with which
specific users can achieve specific goals in specific contexts of use [19]. In the latest
standard [20] defines usability as “the extent to which a product or system can be used
by specific users and achieve specific goals with effectiveness, efficiency and satisfaction
in a specified context of use.

3.2	 Emotionality

Emotions are defined as reactions to events related to the needs or goals concerning
an individual, including physiological, emotional, behavioral and cognitive components
[21, 22]. The perception of emotions in the use of systems is useful for determining user
satisfaction and this experience can adjust subsequent developments.

3.3	 Multiculturalism

In [6] reveal that the software products and general web applications are used by people
from cultures for which they are not originally designed, emphasizing the need to base
a basis for web designs are multicultural.

19CHAPTER # 1 - TEMPLATE FOR DESCRIBING PATTERNS OF INTERACTION AND USER EXPERIENCE

3.4	 Findability

In [5], findability is defined as the measure of the ability of the user to find the informa-
tion sought within a reasonable time. It is a factor that refers to the possibility of finding
or easily retrieve the information needed, a correct result of information architecture,
structure, and content description and classification.

3.5	 Utility

The concept of utility refers to the extent that the website serves the user, as the affec-
tive attitude with the website. We must clarify that this factor refers to the subjective or
perceived usefulness, not objective or technical [23].

3.6	 And others

Currently these facets are mostly considered from the evaluation of products, and some
of them from the design, resulting in increased efforts of time and resources in product
development. In which lies the relevance of this proposal. As we review how to include
design aspects of these facets in the pattern description template it is proposed.

Importantly, the revised templates in paragraph III, the only one that includes aspects of
UX is that of Jennifer Tidwell, who considers usability in the definition of her proposed
standards. Rest not consider these aspects.

4.	 Survey prepared for review of interaction
characteristics of patterns

4.1	 Survey Description

After reviewing the templates, a survey was developed with the objective of identifying
the main elements or characteristics used to describe patterns. This survey was applied
to thematic experts both in business and academic world. The survey attempts to de-
termine the level of importance of these features, from the views of academics and bu-
siness with extensive experience in these area professionals, considering their different
views and opinions.

The hypothesis on the development of this survey is aimed at verifying what features to
consider in describing patterns of interaction. The questions are open and closed type,

20 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

and defined variables are: time experience in the field and the level of importance of
each of the features described in Table 1.

The distribution of the survey was carried out using the free Google tool to create forms
Google Form. A sample of 35 answered surveys was obtained with a sensitivity of 5%.
Although the contact through the Internet was fast, wait times in the responses have
been slow. However, the implementation of the survey was achieved successfully.

4.2	 Analysis of Results

The findings after analyzing the results of the application of the survey are described
below:

•• Respondents are academics and the business sector with experience in interaction
patterns mostly between 5 and 10 years. For some cases, it was possible to survey
people over 10 years of experience

•• Aspects such as classification, problem, solution and examples have been chosen
as very important by 100% of respondents.

•• In the case of other aspects, such as the pattern name, restrictions, applicability
and consequences they were selected high importance by 80 % of respondents.

•• Other aspects such as strength, context, structure, implementation and related
patterns have been chosen as very important by 60% of respondents.

•• The level of importance for the following characteristics was half weakness, parti-
cipants and collaborators.

•• Alias was a minor feature.

•• In relation to include other features in describing patterns only 15% of respondents
said yes, making suggestions such as include aspects of design decisions and the
context should be broader, for example device or platform, environment work (or-
ganizational unit).

4.3	 Choice of the template

Whereas the elements identified in the conceptual review and the results of the survey,
the template was defined for describing patterns of interaction to be proposed in this
research.

21CHAPTER # 1 - TEMPLATE FOR DESCRIBING PATTERNS OF INTERACTION AND USER EXPERIENCE

Aspects such as the problem and the solution are considered key elements in both lan-
guages checked patterns, as in the answers of respondents. Another important element
is the examples to verify the success of the patterns. In the case of context and despite
not being considered of high importance for all respondents, is a fundamental charac-
teristic among these authors, because a mostly agree to describe the categories, users
and challenges of their patterns.

Other aspects are also featured: the forces, pattern name, restrictions, consequen-
ces and related patterns. Not considered in its entirety in the proposed interaction
patterns, or inquiry with experts, but representing high importance when defining
patterns.

Among the most representative examples are those of Seffah [7], Master Detail [15] and
Tydwell [12], in relation to the number and significance of the criteria considered, howe-
ver after evaluating these criteria to experts, the proposal that comes closest is the
Sefah [7], considering that includes aspects of implementation. Although Master De-
tail [15] turns out to be a complete, to inquire among experts as the structure, justifi-
cation, the applicability proposal, Tidwell’s [12] proposal does not include aspects of
implementation.

According to these findings, it is considered using the template describing patterns Se-
ffah proposal [7] with some variations. This template comes together most aspects iden-
tified as relevant here both by the authors of the languages of interaction as respon-
dents, especially as a proposal that includes implementation issues and relationships
between patterns, the latter of great importance in creating a language of interaction
patterns.

Regarding suggestions broader context, including aspects related to the types of devi-
ces and platforms, and the workplace is identified that these aspects have already been
considered in the proposal Sefffah [7] from defining the context.

Another aspect identified as of great importance, not included in the proposed Seffah
[7] corresponds to the restrictions, which provide much information as to the limitations
of the pattern, so it was decided to include them.

The review of facets of the UX has led to consider these aspects in the template descrip-
tion of the patterns of interaction. To this end, they have been reviewed and evaluated
some guidelines or design of these facets (see Figure 2) and has made inclusion in the
template.

22 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Figure 2. Example Implementation Strategy

So far, they have reviewed aspects of multiculturalism, accessibility and usability, but it
is necessary to continue reviewing design guidelines to consider other facets included
in the definition of the patterns. In the case of multiculturalism, we have reviewed the
proposed work on [24], for accessibility the W3C guidelines for accessibility and in the
case of usability, the Guidelines Nielsen.

Considering the above, in Table 8 shows an example, the template description of pat-
terns that were used in this research. The example is a proposal of a pattern of interac-
tion for mobile devices that allows you to search for information and get a result set.

Table 8. Adaptation Template description Seffah [7]

Pattern identification
Pattern name: App Search Results

Alias: Search Results

Author: Yuliana P., César C, Josefina G,
Category: Interaction Patterns
Keywords: Content search

Related Patterns:

Related
Competitors
Superordinate
Subordinate
Neighbors Search_Area, Search_Box Visualizer

This table continues on the following page ––––––>

23CHAPTER # 1 - TEMPLATE FOR DESCRIBING PATTERNS OF INTERACTION AND USER EXPERIENCE

Context of Use

User: Smartphone user technologies.

Tasks: It is necessary to conduct a search for information, review the
results of the search, omit or select one in particular.

Plataform Capacity: Smartphone operating system
IOS, Android.

Problem

Users need to ask a question and get a result set.

Forces

The user need a brief description of the results with highlighted keywords search. The
user must know first closest to the search results, and thus in order of importance.

User Experience Aspects

Usability Aspects
They are implemented when its hypertext structure exceeds
150. They should introduce a standard form. The size of the
box should be wide enough to allow the user to enter multiple
keywords.

Accessibility Aspects
The pages should have a title that describes its subject or
purpose, indicating the language, there should be links with
the same description and different destinations, links to
related pages, a table of contents or site map.

Multiculturalism Aspects The buttons and links should clearly indicate what action will be
taken.

Solution:

A control that allows you to display the results of the search, categorize search results, results
show special is used.

Constraints:

It must be validated connection to the database. It should validate data integrity.

Implementation:

Structure:
Receives a corresponding string with the search, the class is
watching the event and generates search returning a list of objects
corresponding to the display pattern.

Strategy
In this example a search for an application on the Appstore is
made and generates a list of answers. Which are deployed or
displayed on the screen, see Figure 3.

Consequences

Search processes are optimized. The results are organized and categorized, greater ease in
selecting results

24 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Figure 3. Example Implementation Strategy

5.	 Conclusions and Future Work

Although there is no consensus among the authors of patterns and pattern langua-
ges interaction about which elements to consider, and that each author chooses freely
about these features, it is worth noting that each of them to a greater or lesser impor-
tance represents an element of judgment to define or characterize the pattern.

When it comes to implementing interaction patterns it is important to consider imple-
menting elements from the definition thereof. On the other hand, when it comes to crea-
ting interaction pattern languages it is important to consider their interrelationships as
a feature in the definition or description of the patterns.

After defining the template for describing patterns of interaction, this proposal gives way
to design interaction patterns proposed for the language patterns of interaction focused
on user experience, the main objective of this research, then automate the process in-
terfaces generation from these patterns ensuring the inclusion of user experience from
design.

25CHAPTER # 1 - TEMPLATE FOR DESCRIBING PATTERNS OF INTERACTION AND USER EXPERIENCE

6.	 Acknowledgment

In the development of this work we appreciate specialists in HCI, academics and profes-
sionals who assisted in filling out the survey.

7.	 References

[1]	 Van Welie, M., & Troetterbeg, H. (2000). Interaction Patterns in user Interfaces.
PLoP 2000.

[2]	 [Bayle, E., Bellamy, R., & Casady, G. (1998). Putting It All Together: SIGCHI, 17-24.
[3]	 Caceres, J. (10 de Mayo de 2008). Patrones de diseño: ejemplo de aplicación en los

Generative Learning Object Design patterns: example of application in the Genera-
tive Learning Object. Retrieved 10 de Noviembre de 2015 from Revista de Educaión
a Distancia: http://www.um.es/ead/red/M10/caceres.pdf.

[4]	 Arhippainen, L., & Tahti, M. (2003). Nosolousabilidad. Retrieved octubre de 2015
from Nosolousabilidad: www.nosolousabilidad.com/articulos/experienciadeusua-
rio.htm

[5]	 Morville, P. (2006). Information Architecture for the World Wide Web: Designing Lar-
ge-Scale Web Sites (Vol. 3). O’Reilly Media.

[6]	 Masip, L., Gil, R., Granollers, T., & Collazos, C. (2009). Multiculturalidad e internacio-
nalización en interfaces Web Revista Avances en Sistemas e Informática. Revista
Avances en Sistemas e informática, 6 (1657-7663), 191-196.

[7]	 Seffah, A. (2015). Patterns of HCI Design and HCI Design of Patterns. Human-Compu-
ter Interaction Series, Bridding HCI Design and Model-Driven Software Engineering,
A. Seffah, DOI 10.1007/978-3-319-15687-3_2, © Springer International Publishing Swit-
zerland 15 ISBN 978-3-319-15686-6.

[8]	 Muñoz, J., & Rodríguez, G. (2008). Patrones de Interacción: Una Solución para el Di-
seño de la Retroalimentación Visual de Sistemas Interactivos. Instituto Nacional
de Astrofísica Óptica y Electrónica (INAOE), Departamento de ciencias computa-
cionales. Puebla: Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE).

[9]	 Buschmann, Frank; Henney, Kevlin; Schmid, Douglas. Pattern-Oriented Software
Architecture, Volume 4: A Pattern Language for Distributed Computing, Wiley, 2007.

[10]	 Alexander, C. (1979). A Pattern Language. Center for Enviromental Structure, Berkrley
California.

[11]	 Gamma, E., & Helm, R. (1994). Design Patterns: Elements of Reusable Object-Orien-
ted Software.Addison Wesley Professional.

[12]	 Tidwell, J. (2011). Designing Interfaces (Vol. 2). O’Reilly Media.
[13]	 Van Duyne, Douglas, Landay, James and Hong Jason. Design of Sites: Pattern Lan-

guage for Web, 2002. Pearson Education.

26 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

[14]	 Thanh-Diane Nguyen, Jean Vanderdonckt, Ahmed Seffah, Generative Patterns for
Cross-Platform User Interfaces Engineering: The Case of the Master Detail Pattern.
2015 Louvain School of Management.

[15]	 van Welie, M., van der Veer, G., & Eliens, A. (2000). Patterns as Tools for User Interface
Design. Amstemdarnd.

[16]	 Bevan, N. (2008a). UX, Usability and ISO Standards.London: W3 9RG.
[17]	 Bevan, N. (June de 2008b). Classifying and selecting UX and Usability measures.

COST294-MAUSE Workshop: Meaningful Measures: Valid Useful User Experience
Measurement.

[18]	 Masip, L. A. (2013). User experience methodology for the design and evaluation of
interactive systems. Lleida: Universidad de Lleida.

[19]	 ISO. (2009). ISO FDIS 9241-210.: ISO.
[20]	 ISO/IEC 25010. Systems and software Engineering-Systems and software Quality Re-

quirements and Evaluation (SQuaRE) System and software quality models.ISO
[21]	 Brave, S., & Nass, C. (2003). Emotion in Human–Computer Interaction. In The hu-

man-computer interaction handbook (pp. 81-96). NJ, Hillsdale, USA: L. Erlbaum As-
sociates Inc.

[22]	 Méndez, Y., Collazos, C., & Granollers, T. (2014). Evaluating InteractiveSystems from
an Emotional Perpective. Revista Científica Guillermo de OCkam, 43-49.

[23]	 Montero, H. (2006). Factores de Diseño Web Orientados a la Satisfacción y no frus-
tacción de Uso. Revista Española de Documentación Cientifica, 239-257.

[24]	 Zapata V, Palacios A., Colazos C., Muñoz J., Alvarez F., Silva A. MULTICULTURALISM PAT-
TERNS FOR WEB APPLICATION DESIGNLámpsakos | No.11 | pp. 19-28 | enero-junio |
2014 | ISSN: 2145-4086 | Medellín – Colombia.

27

Chapter # 2
Using ISO/IEC 29110

Deployment Package to
construct educational video

games in software engineering

Eréndira M. Jiménez-
Hernández, Hanna
Oktaba, Frida Díaz-
Barriga Arceo
National Autonomous
University of Mexico
Ciudad de México, México
{erendira.jimenez, hanna.
oktaba} @ciencias.unam.
mx, fdba@unam.mx

Mario Piattini
University of Castilla-La
Mancha
Ciudad Real, España
mario.piattini@uclm.es

Alan M.
Revillagigedo-Tulais,
Daniel Barcenas-Acosta
Arturo López-Guzmán
Sergio V. Flores-Zarco
Morelia Institute of
Technology
Morelia, México
{alanmarth, barcenas.dan,
arturolg01}@gmail.com,
vladi_flores@hotmail.com

1.	 Introduction

Educational video games are an interactive, attractive and entertaining technology built
around identities that work with good learning principles [1]. Some of their learning prin-
ciples are: active learning [2], semiotic domain [3] and metacognition [4].

It exists some proposals of educational video games in Software Engineering such as: [5]
designed for early programming education, [6] constructed to encourage collaborative
behavior in teams, [7] developed to teach concepts of software engineering, [8] construc-
ted to facilitate the requirements elicitation, [9] designed to learn key concepts of object-
oriented design patterns and [10] to teach the software engineering process.

Developing educational video games is a complicated task that involves the expertise of
professionals from various disciplines including Computer science, graphic design and
Pedagogy [11].

This chapter presents a methodology created from the ISO/IEC 29110 [12] standard for
Deployment Package, to construct educational video games in software engineering. Our
methodology helped us to construct one video game named Alphaspot [13], which was

28 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

designed to facilitate the learning of the Essence kernel [14] to 12 practitioners that work
in a software enterprise.

The chapter is organized as follows: Section II explains the pedagogical content of the
developed educational video game: the Essence kernel.

Section III presents our proposal of methodology to construct educational video games
in software engineering.

The constructed educational video game and its experience evaluation are presented in
Section IV as results of the use of the methodology.

Finally, our conclusions and future work are detailed in Section V.

2.	 Essence

Essence is a standard approved in 2014 by the Object Management Group (OMG). It is
constituted by methods, practices, one kernel and one language.

The Essence kernel includes the empirical knowledge of software engineering. It is a fra-
mework of thought that permits the reasoning about the progress and health of a software
project. It comprises three areas of concern: costumer, solution and endeavor. Each area of
concern has a set of Alphas (essential things to work with), a set of Activity Spaces (essential
things to do) and Competencies (essential capabilities required) in a software project.

As shows Figure 1 the Essence kernel has seven Alphas: opportunity, stakeholders, requi-
rements, software system, team, work and way of working. Each Alpha has a set of states
sequentially interrelated, and each state has a checklist.

Figure 1. The Alphas of Essence [14]

29CHAPTER # 2 - USING ISO/IEC 29110 DEPLOYMENT PACKAGE TO CONSTRUCT EDUCATIONAL VIDEO GAMES IN SOFTWARE ENGINEERING

3.	 Methodology to construct educational
video games

The methodology to construct educational videogames is composed by three stages and
three processes. The stages are: pre-production, production and post-production, as
specifies in [12, 15]. The processes are: project management, software implementation
and pedagogical implementation (see Figure 2).

In order to create the activities for each process, it is necessary to identify three main
actors: for the “project management” process it is desirable a “Project Manager/leader”
(PRM), for the “software implementation” process it is necessary a “video game develo-
pment team” (VGDT), and for the “pedagogical implementation” process it must to exist
a “Pedagogic Manager”(PEM).

Figure 2. Methodology to construct educational video games

30 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

In the pre-production, the activities included are:

a.	 Define the objective of learning (by PEM).
b.	 Search information related to the aim of learning (by PEM).
c.	 Select the educational content (by PEM).
d.	 Share/teach the educational content [16] with the members of the video ga-

mes development team (by PEM).
e.	 Define the context/scenario of the video game according with the educational

content (by VGDT).
f.	 Propose the storyboard of the educational video game (by VGDT).
g.	 Design the characters of the educational video game (by VGDT).
h.	 Verify the design of the educational content (by PEM).
i.	 Obtain/specify the educational video game requirements (by PRM).
j.	 Make the documentation of the educational video game designs (by PRM).
k.	 Estimate costs (by PRM).
a.	 Define the project plan (by PRM).

In the production, the activities included are:

a.	 Codify the video game (by VGDT).
b.	 Verify the implementation of the educational content (by PEM).
c.	 Ensure compliance with the project plan (It can make use of the kernel Alphas

of Essence) (by PRM).
d.	 Ensure the quality of the construction processes of the video game (by PRM).

In the post-production, the activities included are:

a.	 Confirm that the video game fulfills the learning objective (by PEM).
b.	 Test the video game (by VGDT).
c.	 Assess the video game quality (by PRM).
d.	 Make the final documentation of the educational video game

(by VGDT and PRM).

As part of the foundation of the information, it is necessary to create 4 documents:

a.	 Pedagogical document. It describes: (1) teaching objective, (2) learning level,
(3) interaction scheme, (4) synthesis of information through glossaries, mind
maps, synoptic maps and/or conceptual paintings and (5) test with questions
and answers to evaluate the learning. This document is the result to perform
the activities a) to d).

31CHAPTER # 2 - USING ISO/IEC 29110 DEPLOYMENT PACKAGE TO CONSTRUCT EDUCATIONAL VIDEO GAMES IN SOFTWARE ENGINEERING

b.	 Document of definition of the project. It describes: (1) name of the edu-
cational video game, (2) aim of the educational video game, (3) features
of the educational video game, e.g. Target audience, languages, operating
systems, etc., (4) technologies, e.g. Programming languages, game engine,
modeling software, etc., (5) video game history, (6) storyboard, (7) cards of
the characters with name, features, actions, etc., (8) list of requirements,
(9) UML diagrams [17] and (10) Play-flow diagrams [18]. This document is
the result to perform the activities e) to j).

c.	 Project schedule document. It describes: (1) tasks list, (2) assignment of
responsibilities and (3) delivery dates. This document is the result to per-
form the activities k) and l).

d.	 Final document of the project. It describes: (1) general project informa-
tion, e.g. Project’s name, date, authors, path/address of the code, exe-
cutable project and documents A-C, etc., (2) configuration management,
(3) game overview, e.g. name, objective, story and look and feel of the
educational game video, (4) game play, e.g. play flow, characters, assets,
etc., (5) artificial intelligence, e.g. collision detection, (6) technical infor-
mation, (7) user manual, (8) Appendices, e.g. script of voices, message
list, commented code, etc. This document is the result to perform the
activities m) to t).

The processes of Project Management and Software Implementation could result
familiar in software engineering, but the Pedagogical Implementation process not
that much. It is the reason why we propose conducting a techno-pedagogical de-
sign based on constructivist learning environments, such as [19]. The aim of the
Jonassen’s Model is to promote problem solving and conceptual development [20].
It allows designing environments that involve the members of the construction
team in the development of knowledge [21].

Jonassen explains that the essential components (see Figure.3) in the construc-
tivist learning environments include: (1) question or project as the focus of the
environment, it implies the context, the simulation and the manipulation space
problems; (2) related cases which provide different perspectives; (3) information
resources, it implies to provide just-in-time information to help learners compre-
hend and solve the problem; (4) cognitive tools such as computer tools that help
to visualize, organize, automate, or supplant thinking skills; (5) conversation/co-
llaboration tools such as e-mails, Skype® and (6) social/contextual tools such as
reflexive diary.

32 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

We compare our methodology with [22]. It has 7 stages. Experts in the field of education
carry out the first and the second stages. The artistic director and scenarist conduct the
next three stages. The sixth stage is the construction of the game, and the last one con-
sists in the documentation of the game.

In our methodology, we have 3 stages, and each one of them has 3 connected processes.
However, even though the methodology proposed has fewer stages; we accomplish the
same objective.

Also, we compare our proposal with MISA [23], which has five stages: analysis of the pre-
liminary design, elaboration of architecture, the design of educational materials, reali-
zation of the pedagogic material and validation of pedagogic material. In our proposal,
we grouped the three first stages of MISA in the “pre-production” stage. The fourth stage
of MISA corresponds to “production” stage. And the last stage is the “post-production”
in our methodology.

Figure 3. Jonassen’s Model

4.	 Results
One educational video game named “Alphaspot” was constructed using the methodolo-
gy proposed in this chapter. To program Alphaspot, we employed the game engine “Unity
5” [27] and the program languages C# and JavaScript.

33CHAPTER # 2 - USING ISO/IEC 29110 DEPLOYMENT PACKAGE TO CONSTRUCT EDUCATIONAL VIDEO GAMES IN SOFTWARE ENGINEERING

It can be played for a single player [24]. With this video game it is possible to obtain the
learning levels of remembering and understand [25] through the four sensorial styles:
visual, auditory, kinesthetic and reading/writing [26].

The Alphaspot’s objective is to facilitate the learning of the Alphas of Essence and its sta-
tes. 41 levels constitute this educational video game (one for each state of each Alpha).

The name of the main character of this educational video game is Alphaspot (see Figure 4).

Figure 4. Card of the main character

Alphaspot is a sphere that can walk, jump, roll, turn on/off its antenna and change
the color of its antenna. Alphaspot and the other characters (the enemies, alphaspirits
and the final boss) were modeled using 3Dmax Studio©, Adobe Photoshop© and Adobe
Flash© (see Figure 5).

Figure 5. Alphaspot’s model

34 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Alphaspot starts with an initial menu (see Figure 6), it appears an initial menu, which
has four options: new game, load game (for games previously played), credits and
exit.

Figure 6. Alphaspot’s play flow

If the player chooses “new game”, it appears a video that explains the context and the
history of the video game: in a meeting of one software development team, there is a

35CHAPTER # 2 - USING ISO/IEC 29110 DEPLOYMENT PACKAGE TO CONSTRUCT EDUCATIONAL VIDEO GAMES IN SOFTWARE ENGINEERING

discussion, in which all the members are blaming ones each other for the problems
of their software project. Suddenly, the main character of the video game (Alphaspot)
gets inside the room and starts to explain them what is Essence and how can they use
it to solve the problems. The team decides to use Essence, but Alphaspot explains that
its enemies have robbed the state cards. So, the player needs to find the 41 cards in
the video game to comply the mission and to help to the software development team
(see Figure 7a).

After the introductory video, the player is introduced in a training level (see Figure
7b) where s/he can learn to play. When the player passed this level, s/he can see the
main menu (see Figure 7c) that represents the seven Alphas with portals. Each portal
has a color (green, yellow or blue) that permits to identify its area of concern (costu-
mer, solution and endeavor). The player can choose whatever Alpha because there is
not a specific order. When the player moves to Alphaspot next to one portal, there is a
character named “Alphaspirit” that brings all the information about the corresponding
Alpha (see Figure 7d).

When the player gets inside to one Alpha, s/he will see the states of the Alpha repre-
senting by levels. The levels of one Alpha are sequential (see Figure 7e).

When the player gets inside to one level, s/he needs to find all the checkpoints of the
state to obtain its card. E.g. Figure 7f shows the screen of the first level called “Prin-
ciples established”, that belongs to Alpha “Way of Working”, here the player needs
to find the eight checkpoints to get the card. Each level has a different appearance,
sound and enemies (see Figure 7g).

Once the 41 cards are collected, the player will see a video that will show the charac-
ters in the initial meeting but now using the Alphas cards to solve their problems (see
Figure 7h).

Finally, the video game has an evaluation level, in which a “final boss” makes some
questions to Alphaspot, and he has three possible options for choose one, as shown
in Figure 7i.

Alphaspot was developed in seven weeks. It is available in two languages: English and
Spanish. It can be executing on computers with Mac OS© and Windows©. It can be
downloaded from www.alphaspot.com.mx and from Google Play. Figure 8 shows the
adaptation of the video game to one mobile with Android.

36 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 7. Alphaspot’s screens: (a) Initial meeting, (b) Training level, (c) Main menu, (d) Alphaspot
next to one portal, (e) Levels of the Alpha “Requirements”, (f) Level “Principles Established”

of Alpha “Way of working”, (g) Level “Seeded” of Alpha “Team”, (h) Final meeting, (i) Evaluation
level.

37CHAPTER # 2 - USING ISO/IEC 29110 DEPLOYMENT PACKAGE TO CONSTRUCT EDUCATIONAL VIDEO GAMES IN SOFTWARE ENGINEERING

Figure 8. Alphaspot in Android

We evaluated Alphaspot with the IMI (Intrinsic Motivation Inventory) as did in [28]. IMI
is a method to evaluate the perceived experience when certain persons are performing
some activity. IMI has 36 questions that evaluate 7 factors: (1) interest/enjoyment, (2)
perceived competence, (3) effort, (4) pressure/stress, (5) perceived choice, (6) value/
usefulness and (7) connection. It has an answer scale from 1 to 7, where 1 represents “not
completely true” and 7 means “very true”.

We randomly selected 12 practitioners in a Mexican software entity to play Alphaspot
per 2 hours for 4 days. The Spanish version of Alphaspot for computers was used in the
experiment.

After the 8 hours played, all the practitioners obtained the 41 cards, and eleven of the
twelve practitioners approved the final test (the evaluation knowledge level).

Then, the practitioners answered the 36 questions of the IMI. Table 1 shows the average
of each practitioner by each factor.

The results of the questionnaire shows that: For the IMI’s factor 1 the average was 6.5,
it means that the practitioners enjoyed to play with Alphaspot; for the IMI’s factor 2 the
average was 5.9, it means that the practitioners felt that they had the competencies ne-
eded to play Alphaspot; for the IMI’s factor 3 the average was 3.7, it could be interpreting
as the practitioners did not feel much effort playing with Alphaspot; for the IMI’s factor
4 the average was 1.7, it implies that they did not feel much pressure or stress playing
Alphaspot; for the IMI’s factor 5 the average was 5.9, which means that the practitioners
felt that they could choose what they wanted to learn and keep their own rhythm; for the
IMI’s factor 6 the average was 6.4, it means that the practitioners thought that Alphaspot
was usefulness; and finally, for the IMI’s factor 7 the average was 6.3, so, the practitioners
felt connection with the educational video game.

38 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

TABLE I. Results of IMI

Pract.
FACTOR

1 2 3 4 5 6 7
1 7 7 4.5 2 7 7 7
2 6 5 2.3 1 5 6 6
3 7 7 6.8 1 7 7 7
4 7 7 2.5 1 7 7 7
5 5 6 7 2.5 4 5.8 5
6 6.5 4 3 1.7 6 6.2 6
7 7 7 2.5 1 7 7 7
8 6.2 3 4.5 2.8 5 5.6 6
9 5.8 5 2.8 3 3 5.2 5
10 7 7 2.5 1 7 7 7
11 6 6 4.7 2 6 5.8 6
12 7 7 1.5 1 7 7 7

Average 6.5 5.9 3.7 1.7 5.9 6.4 6.3

5.	 Conclusion and future work

This chapter presented an adaptation of the ISO/IEC 29110 standard for “Deployment
Package”, to develop educational video games in the area of ​​software engineering.

The proposed methodology has three stages: pre-production, production and post-pro-
duction. In addition, it has three processes: project management, software implementa-
tion and pedagogical implementation.

To use the methodology, it is necessary to have three types of roles: project manager/
leader, pedagogic manager and programmers.

As a result of the usage of the methodology, one educational video game named “Alphas-
pot” was created to facilitate the learning of Alphas of the Essence kernel. The Alphas
allow assessing the health and progress of a software effort.

Twelve practitioners working in a software entity played Alphaspot. They answered 36
questions to evaluate the perceived experience after play the educational video game.

With the obtained results, we will improve some ludic aspects of Alphaspot and we will
test the game again with more people.

This table continues on the following page ––––––>

39CHAPTER # 2 - USING ISO/IEC 29110 DEPLOYMENT PACKAGE TO CONSTRUCT EDUCATIONAL VIDEO GAMES IN SOFTWARE ENGINEERING

We are planning to construct more educational video games in order to keep testing our
methodology.

6.	 Acknowledgment

This work has been funded by the Graduate Science and Engineering Computing (UNAM)
and the CONACyT grant scholarship program.

7.	 References

[1]	 UNESCO, “El niño y el juego. Planteamientos teóricos y aplicaciones pedagógicas”,
Estudios y documentos de educación vol. 34. París, France, pp. 1-20, 1980.

[2]	 Meyers, C. and Jones, T., “Promoting Active Learning: Strategies for the College Clas-
sroom”. San Francisco, USA: Jossey-Bass, pp.1-24, 1993.

[3]	 Gee, J. P., “What video games have to teach us about learning and literacy, revised
and updated”. Basingstoke: Palgrave Macmillan, pp. 5-16, 2008.

[4]	 Flavell, J. H., “El desarrollo cognitivo”. Madrid, España: Visor, pp. 24-239, 1993.
[5]	 Paliokas, I., Arapidis, C. and Mpimpitsos, M., “PlayLOGO 3D: A 3D interactive video

game for early programming education”. Proc. Third International Conference on
Games and Virtual Worlds for Serious Applications, pp. 24-31, 2011.

[6]	 Wendel, V., Gutjahr, M., Göbel, S. and Steinmetz, R., “Designing collaborative multi-
player serious games. Escape from Wilson Island - A multiplayer 3D serious game
for collaborative learning in teams”. Education and Information Technology, vol. 18,
pp. 287-308, 2013.

[7]	 Cooper, K. and Longstreet, C., “Towards model-driven game engineering for serious
educational games: Tailored use cases for game requirements”. Proc. of the 17th
International Conference on Computer Games, (CGames ‘12), pp. 208-212, 2012.

[8]	 Shabalina, O., Sadovnikova, N. and Kravets, A., “Methodolody of Teaching Software
Engineering: Game-based Learning Cycle”. Proc. of the Third Eastern European Re-
gional Conference on the Engineering of Computer Based Systems, pp.113-119, 2013.

[9]	 Rusu, A. Russell, R. Cocco, R. and DiNicolantonio, S., “Introducing Object Oriented
Design Patterns through a Puzzle-Based Serious Computer Game”. Proc. of the 41st
ASEE/IEEE Frontiers in Education Conference, (FIE ‘11), pp. 1-6, 2011.

[10]	 Zhu, Q., Wang, T. and Tan, S., “Adapting Game Technology to Support Software Engi-
neering Process Teaching: From SimSE to MO-SEProcess”. Proc. of the Third Interna-
tional Conference on Natural Computation, (ICNC ‘07), pp. 777-780, 2007.

[11]	 Tavinor, G., “The art of video games”. Wiley-Blackwell, pp. 20-34, 2009.
[12]	 ISO/IEC 29110, “Deployment Package. Part 1- Technical Description”. International

Organization for Standardization (ISO), pp. 1-48, 2015.

40 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

[13]	 Jiménez-Hernández, E., Oktaba, H., Revillagigedo-Tulais, A., Flores-Zarco, V., Barce-
nas-Acosta, D. and Guzmán-López, A., “Alphaspot”. Retrieved from: www.alphaspot.
com.mx, 2015.

[14]	 OMG, “Kernel and Language for Software Engineering Methods (Essence)”. USA:OMG,
pp. 15-62. Retrieved from: http://www.omg.org/spec/Essence/1.0/, 2014.

[15]	 Jimenez-Hernández, E., Oktaba, H., Piattini, M., Díaz-Barriga,F., Revillagigedo-Tulais,A.
and Flores-Zarco,V., “Methodology to construct educational video games in software
engineering”. Proc. of the 4th International Conference in Software Engineering Re-
search and Innovation (CONISOFT ’16), pp. 110-114. doi: 10.1109/CONISOFT.2016.25, 2016.

[16]	 Jonassen, D. y Rorher-Murphy, L., “Activity Theory as a framework for designing
constructivist learning environments”. Educational Technology: Research and Deve-
lopment, vol. 46 no.1, 1999.

[17]	 Booch, G., Rumbaugh, J. and Jacobson, I., “The Unified Modeling Language User Gui-
de”. Addison Wesley Longman, 1998.

[18]	 Arrabales-Moreno, R., “Desarrollo de la lógica de un videojuego”. Universidad Carlos
III Madrid, pp. 35-36, 2012.

[19]	 Jonassen, D., “El diseño de entornos constructivistas de aprendizaje”. Aula XXI San-
tillana, pp. 93-224, 2000.

[20]	 Jonassen, D., “Evaluating Constructivist Learning”. Educational Technology, vol. 31,
no.9, (ERIC Document Reproduction Service No. EJ433315), pp. 28-33, 1991.

[21]	 Jonassen, D. & Rorher-Murphy, L., “Activity Theory as a framework for designing
constructivist learning environments”. Educational Technology Research and Deve-
lopment, vol. 46, no.1, doi: 10.1007/BF02299477, pp. 61-79, 1999.

[22]	 Yusoff, A., Crowder, R., Gilbert, L. and Wills, G., “A Conceptual Framework for Serious
Games”. Proc. of the Ninth IEEE International Conference on Advanced Learning Te-
chnologies, pp. 21-23, 2009.

[23]	 Paquette G., Crevier F., Aubin C., “Méthode d’ingénierie d’un système d’apprentissage
(MISA)”. Revue Informations In Cognito, vol. 8, pp. 37–52, 1997.

[24]	 Wenger, E., “Cultivating Communities of Practice (Hardcover)”, USA: Harvard Busi-
ness Press, pp. 1-45, 2002.

[25]	 Anderson, L. & Krathwohl, D., “A Taxonomy for learning, teaching and assessing: a
revision of Bloom’s Taxonomy of educational objectives”. New York, USA:Adisson
Wesley Longman, pp. 1-82, 2001.

[26]	 Hawk, F. and Shah, A., “Using Learning Style Instruments to Enhance Student Lear-
ning”. Decision Sciences Journal of Innovative Education vol. 5, pp. 1- 19, 2007.

[27]	 Unity, “Create and connect with Unity 5”. Retrieved from: https://unity3d.com/es, 2015
[28]	 Yamabe, T. and Nakajima, T., “Playful training with augmented reality games: case

studies towards reality-oriented system design”. Multimedia Tools and Applica-
tions, vol. 62, pp. 259-286, 2013.

41

Chapter # 3
Associating quality

measures to the alpha
states of the SEMAT kernel

1.	 Introduction

The ISO/IEC 25000 (also called SQuaRE) standard provides comprehensive coverage
to software quality [2]. Such a standard was developed in order to cover two main
processes: “software quality requirements specification and systems and software
quality evaluation” based on a systems and software quality measurement process
[2]. ISO/IEC 25000 standard comprises five main divisions: 1) quality management
division; 2) quality model division; 3) quality measurements division; 4) quality requi-
rements division; and 5) quality evaluation division. ISO/IEC 25000 standard replaces
the ISO/IEC 9126 [1] and the ISO/IEC 14598 standards [1]. Thus, the ISO/IEC 9126 stan-
dard is the foundation for the development of the SQuaRE series [4].

Nowadays, the lack of a theoretical basis and the prevalence of fads and fashions are
some of the challenging issues of software engineering [4]. SEMAT (Software Engi-
neering Method and Theory) has been proposed for addressing such issues [5]. “SE-
MAT is an initiative developed for re-founding the software engineering by defining
theoretical basis, best practices, and a set of widely-agreed elements” [6, 7]. Alphas
are some of the elements of the SEMAT kernel and they can be used for assessing
the health and progress of a software engineering endeavor [5]. Seven alphas are
included in the SEMAT kernel. Alphas are representations of the essential things to
work with [7].

Carlos Mario Zapata Jaramillo
Departamento de Ciencias de la
Computación y de la Decisión
Universidad Nacional de Colombia
Sede Medellín
Medellín, Colombia
cmzapata@unal.edu.co

Yury Montoya Pérez
Estudiante de Maestría en Ingeniería de
Sistemas
Universidad Nacional de Colombia
Sede Medellín
Medellín, Colombia
ymontoyap@unal.edu.co

42 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

According to the ISO/IEC 25000 standard, a measure is defined as “a variable to which
a value is assigned as the result of measurement.” [2] In previous work [18], we use the
ISO/IEC 9126 metrics for measuring the states of some SEMAT kernel alphas. In this
Chapter, we propose the selection of the appropriate measures of the ISO/IEC 25023
standard for evaluating and validating some alpha states of two SEMAT kernel alphas—
requirements and software system—in order to obtain a high-quality software product.

This Chapter is organized as follows: in Section 2 we review the theoretical framework,
which includes an introduction to the ISO/IEC 25000 and ISO/IEC 25023 standards for
systems and software quality evaluation, an introduction to the ISO/IEC 9126 standard
for software product quality, and an overview of the Software Engineering Method and
Theory. The state of the art about ISO/IEC 25023 measures related to the alphas software
system and requirements is presented in Section 3. In Section 4, the relationship bet-
ween ISO/IEC 25023 and the alpha states of the SEMAT kernel is carried out. Finally, in
Section 5 conclusions and future work are discussed.

2.	 Theoretical framework

2.1	 ISO/IEC 25000—SQuaRE

ISO/IEC 25000 was developed in order to address “software quality requirements speci-
fication and systems and software quality evaluation” [2] and comprises five divisions:

»» ISO/IEC 2500n—Quality Management Division
»» ISO/IEC 2501n—Quality Model Division
»» ISO/IEC 2502n—Quality Measurement Division
»» ISO/IEC 2503n—Quality Requirements Division
»» ISO/IEC 2504n—Quality Evaluation Division

SQuaRE is aimed to support the development of software products with “the specifica-
tion and evaluation of quality requirements” [2]. First division includes terms and defi-
nitions, and the models of the SQuaRE series. Also, this division can be used to provide
guidance for managing product requirements specification and evaluation [2]. Second
division includes “detailed quality models for systems and software product, quality in
use, and data” [2]. Third division includes internal, external and quality-in-use measu-
res. Also, this division includes a mathematical definition of the quality measures and
guidance in order to use them [2] by referencing the ISO/IEC 9126-2, -3, and -4 [8]. Fourth
division is intended to help to specify quality requirements. Fifth division includes “re-
quirements, recommendations and guidelines for product evaluation.”

43CHAPTER # 3 - ASSOCIATING QUALITY MEASURES TO THE ALPHA STATES OF THE SEMAT KERNEL

In Figure 1 we depict the structure and content of the SQuaRE series. Each division of the
SQuaRE series is intended to support software quality evaluation.

Figure 1. The SQuaRe series of standards: [2]

This proposal is focused on the third division, which includes ISO/IEC 25023 standard.
ISO/IEC 25023 contains external and internal quality measures for evaluating the sys-
tem/software product quality [3]. Both external and internal measures can be used for
quantitatively evaluating the software product when the development model used is
iterative or incremental. The quality measures defined in this standard are intended to
be implemented in terms of the next characteristics: functional suitability, performance
efficiency, compatibility, usability, reliability, security, maintainability, portability [3].

2.2	 Software engineering method and theory (SEMAT)

SEMAT is an initiative proposed to address some of the major problems the software
engineering faces today [5]. SEMAT initiative includes a set of widely-agreed elements
and solid theoretical basis of the software engineering, which can be used for practice
composition, enactment of methods, and use and improvement of methods. SEMAT is
focused on three areas of concern, represented by colors: Customer (green), Solution
(yellow), and endeavor (blue), as shown in Figure 1. The first area is focused on the actual
use of the software system, the second area is focused on specification and develop-
ment of the software system, and the third area is focused on the team and their way
of working [5].

44 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

The SEMAT kernel includes essential elements to work with in every software develo-
pment endeavor (the so-called alphas): opportunity, stakeholder, requirements, soft-
ware system, work, team, and way of working. They can be used for assessing the
health and progress of a software engineering endeavor [7]. Descriptions of what a
team commonly produces and uses during the development of a software product—
like requirements and design—can be provided by the alphas [5]. Alphas are different
from work products, since alphas represent critical indicators of the progress and
health of a software product. Each alpha includes a set of states, which have associa-
ted checklists. In Figure 2 we show the alphas of the SEMAT kernel.

Figure 2. Alphas of the SEMAT kernel. Source: [2]

2.3	 ISO/IEC 9126 standard overall view

ISO/IEC 9126 standard comprises four technical reports: 1) Quality model; 2) External
metrics; 3) Internal metrics; and 4) Quality in use metrics. The quality model includes
two parts for software product quality. First part is an introduction of external and in-
ternal quality, which is specified in detail in Part 2 and Part 3 of the ISO/IEC 9126 stan-
dard. Second part of the quality model is an introduction to quality-in-use metrics. Ex-
ternal metrics are implemented during the testing stages of the software development
life cycle for measuring the behavior of the system [9]. “Internal metrics are applied to
the non-executable software product” and they are useful to identify quality issues in
the early stages of the software development life cycle [10]. Finally, quality-in-use me-
trics are implemented for measuring the way a software product meets the needs of
users in order to achieve specified goals [11]. Parts 2 and 3 of the ISO/IEC 9126 standard

45CHAPTER # 3 - ASSOCIATING QUALITY MEASURES TO THE ALPHA STATES OF THE SEMAT KERNEL

are related to six characteristics—functionality, reliability, usability, efficiency, maintai-
nability, and portability—, which are further subdivided into sub-characteristics. Part 4
is related to four characteristics—effectiveness, productivity, safety, and satisfaction—
with no sub-characteristics [8, 11].

In Figure 3, we show the influences among the three types of metrics. So, internal
quality influences the external quality and quality in use is highly influenced by the
external quality. Quality in use depends on external quality, and external quality
depends on internal quality, i.e. quality begins from the very early stages of the de-
velopment of the software product. ISO/IEC 9126 standard was developed in order to
assess software product quality by using metrics, which can be modified by the users
of the standard [8]. Each quality characteristic has associated sub-characteristics
and metrics.

Figure 3. Relationship between types of metrics. Source: [8]

3.	 State-of-the-art review

3.1	 Associating performance measures with perceived
end user performance: ISO 25023 compliant low
level derived measures

Ravanello et al. [12] propose an improvement of the service level agreements for cloud
computing applications. Measures of the ISO/IEC 25010 standard are applied in order
to predict the degraded state of a private cloud computing application. The relation-
ship between the ISO/IEC 25010 measures and low level derived measures is unders-
pecified in this work. They implement measures associated with the efficiency charac-
teristic. Normal, abnormal, adequate, and degraded are the indicators they implement
for modeling the state of a large private computing application.

46 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

3.2	 A new quality in use model for mobile user
interfaces

Alnanih et al. [13] propose a new quality-in-use model for measuring user interface de-
sign quality. This model is based on the ISO/IEC 9126-4 technical report and it is intended
to be specifically used in mobile devices. The proposed model includes a new factor or
sub-characteristic according to the ISO/IEC 9126 called “Task Navigation” and aims at hel-
ping the designer to evaluate the mobile application while executing work-related tasks.
This proposal is intended to be used for mobile devices instead of any other software
product. Some inconsistencies related to the terminology the ISO/IEC 9126 standard arise,
since they use different terminology for term characteristic and metric.

3.3	 Tutorial about SEMAT initiative and MetricC game

Zapata et al. [14] present a tutorial about a SEMAT-based game called MetricC. The game
allows players for understanding activity spaces, which are defined in the SEMAT kernel, as
well as completion criteria and metrics. Players need no previous knowledge about SEMAT.
They use some ISO/IEC 9126 metrics for measuring checklists of the alpha states. Relation-
ship between alpha states and ISO/IEC 9126 metrics is subjectively defined by the game
authors. This tutorial has a brief specification of which metrics of the standard they are
using, which leads to misunderstand the metrics they relate to the activity spaces.

3.4	 Enhancing ISO/IEC 25021 quality measure elements
for wider application within ISO 25000

St-Louis and Suryn [4] propose an approach for determining a set of quality measure
elements as a way to improve the applicability of ISO/IEC 25010. They define a core set of
measures excluded from the ISO/IEC 25010 measures. This proposal is aimed to define
“a precise set of base quality measures, which would serve as a basis for further deve-
lopment of the majority of derived quality measures.” [4] The authors claim the core set
of measures is easier to understand and apply.

3.5	 On the relationship of concern metrics and
requirements maintainability

Conejero et al. [15] introduce an empirical analysis of the correlation among crosscut-
ting properties and two ISO/IEC 9126 maintainability attributes, namely changeability
and stability. The chapter has some inconsistencies related to the terminology the
authors are using to describe the ISO 9126 standard; they use the words quality attri-

47CHAPTER # 3 - ASSOCIATING QUALITY MEASURES TO THE ALPHA STATES OF THE SEMAT KERNEL

butes and sub-attributes instead of characteristics and sub-characteristics which are
the right words to use when describing the ISO/IEC 9126 quality model. The authors are
focused on answering the next question: How do scattering, tangling and crosscutting
affect requirements maintainability? The authors correlate some concern metrics with
maintainability and they exclude other characteristics.

3.6	 Metric proposal for system testing models
verification of safety critical systems

Spendla et al. [16] propose a new metric for verifying the system testing model for
critical systems. The proposed metric is based on the ISO/IEC 9126 standard and it is
intended to verify communication subsystem—a specific area of critical systems. The
value of this metric determines whether the system testing model meets the specified
requirements or not. This metric is based on the adecuacy metric of the ISO/IEC 9126
standard. This proposal can be only used for newly designed system testing models of
safety critical systems, which make the proposal so limited.

3.7	 Customizing ISO 9126 quality model for evaluation of
B2B applications

Behkamal [17] proposes a quality model for evaluating B2B applications by customi-
zing the ISO/IEC 9126 quality model in order to identify acceptance criteria and evalua-
te a particular application domain. The quality model has five steps: choosing ISO qua-
lity model as a basis; Identifying quality characteristics of B2B applications; choosing
a group of software experts; assigning weights to the quality factors and sub-factors
and developing quality criteria. The customization of the ISO/IEC 9126 model is done
by extracting the quality factors from web applications and B2B e-commerce applica-
tions, weighting these factors from the viewpoints of both developers and end users,
and adding them to the new model. This chapter exhibits some inconsistencies related
to the terminology the authors are using for describing the ISO/IEC 9126 quality model.
For example, they use the words quality factors instead of characteristics. The propo-
sal is restricted to B2B applications. Also, metrics for implementing B2B applications
are subjectively defined by the authors.

3.8	 On the relationship of the ISO/IEC 9126 metrics and
the alpha states of the SEMAT kernel

Zapata and Montoya [18] propose some ISO/IEC 9126 metrics to be related to the re-
quirements and the software system alpha states. The ISO/IEC 9126 standard was re-

48 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

placed by the SQuaRE standard, then the metrics should be replaced by ISO/IEC
25000 measures.

4.	 The ISO/IEC 25023 measures and alpha
states relationship

In this Section, we explain each alpha and then we propose the relationship
between ISO/IEC 25023 measures and the alpha states. We use the terms metric
and measure in our proposal to refer to “a measurement scale and the method
used for measurement” [8]. The term metric is used in ISO/IEC 9126, while the
term measure is used in ISO/IEC 25000—SQuaRE. Their meanings are basically
the same.

The SEMAT kernel alphas are used to address three issues: 1) they capture the key
concepts of software engineering; 2) they support the assessment of health and
progress of a software endeavor; and 3) they are used to define software engi-
neering methods and practices [5]. Each one of the SEMAT kernel alphas has a set
of states. Alpha states are implemented when assessing the health and progress
of a software endeavor [18]. Each alpha state has associated a checklist. A state
can be only achieved when the entire checklist items are met [5]. “There is the
possibility of iterate through the states if necessary, it depends on your choice
of practices.” [5]

According to the ISO/IEC 25023 standard, both external and internal measures can
be used for quantitatively evaluating the software product when the development
model used is either iterative or incremental [3]. Internal metrics play an important
role in the development process, since they can be used to predict the quality of
the final product [10]. System/software specification, architectural design, detailed
design, component and code can be measured by using internal metrics [3]. Exter-
nal metrics should be applied to executable software and they can be only used
during testing stages of the software development life cycle [9]. In our study, only
two alphas can be related to ISO/IEC 25023 measures: requirements and software
system [18]. The remaining alphas have no relation with the ISO/IEC 25023 stan-
dard, since such standard is focused on software product quality by evaluating
eight characteristics related to technical factors—functional suitability, performan-
ce efficiency, compatibility, usability, reliability, security, maintainability, portability
[3]. Consequently, customer and endeavor—the remaining areas of concern—are
uncovered by the standard.

49CHAPTER # 3 - ASSOCIATING QUALITY MEASURES TO THE ALPHA STATES OF THE SEMAT KERNEL

4.1	 Requirements

“Requirements are what the software must do to address the opportunity and satisfy the
stakeholders” [5]. Requirements capture the needs of the stakeholder to solve a problem
or to achieve a specific goal [19]. During the development of a software product, the
requirements are reprioritized and adjusted to the needs of the stakeholders [5]. “This
allows the requirements to act as a verifiable specification for the software system.” [5]
Requirements can be verified and evaluated during the testing stages of the software
development process. SEMAT includes six states to track the health and progress of the
requirements, as shown in Figure 4. Requirements can change during the software deve-
lopment life cycle until they are acceptable for the stakeholder, but “ it is essential that
they stay within the bounds of the original concept and that they remain coherent at all
times” [5].

Figure 4. The states of the requirements. Source: [5]

4.2	 Software system

“A software system is made up of software, hardware, and data that provides its primary
value by the execution of the software.” [5] During the development of a software sys-
tem, six states can be identified according to the SEMAT kernel: architecture selected,
demonstrable, usable, ready, operational, and retired. In Figure 5, we show the states of
the software system [18]. Each state provides stability during the software system deve-
lopment process.

50 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Our proposal is focused on the selection of the appropriate ISO/IEC 25023 measures to
evaluate and validate the chosen states of the alphas—in this case requirements and
software system. The relation is based on similar terminology and meanings of the ISO/
IEC 25023 measures and the checklist of the chosen alphas belonging to the SEMAT ker-
nel [18].

We first analyzed the alpha Requirements and its states. We chose the state Addressed
to be measured by ISO/IEC 25023 measures. The selection of the state is mainly based
on its checklist, as shown in Table 1. The checklist includes four items and supports the
evaluation of health and progress of the requirements. All of the items should be met
in order to obtain the state. “In the addressed state the amount of requirements that
have been addressed is sufficient for the resulting system to provide clear value to the
stakeholders” [5].

Figure 5. The states of the software system. Source: [5]

Table 1. Addressed state of the alpha requirements

Checklist
Alpha state Items

Addressed

Enough of the requirements are addressed for the resulting system to be
acceptable to the stakeholders.
The stakeholders accept the requirements as accurately reflecting what the
system does and does not do.
The set of requirement items implemented provide clear value to the stakeholders.
The system implementing the requirements is accepted by the stakeholders as
worth making operational.

51CHAPTER # 3 - ASSOCIATING QUALITY MEASURES TO THE ALPHA STATES OF THE SEMAT KERNEL

We identified functional coverage—what portion of the specified functions has been
implemented— as a direct measure to verify and validate the addressed state [3]. This
measure is part of the set of measures of the functional completeness sub-characte-
ristic, and this sub-characteristic is part of the functional suitability characteristic. The
relevant measures identified are: functional coverage, functional correctness, functional
appropriateness of usage objective, and functional appropriateness of system. The re-
levant measures identified can all be applied for evaluating the state addressed. There
are more measures that can be applied for validating this state but for the scope of this
Chapter, we only selected one measure: functional coverage.

	 χ = 1 − (α/β)	 	 (1)

	 α = Number of functions missing.

	 β = Number of functions specified.

ISO/IEC 25023 standard “does not assign ranges of values of the measures to rated levels
or to grades of compliance because these values are defined based on the nature of the
system, product, or a part of the product” [3].

The chosen measure is adequate for validating the functions specified in the require-
ments, since the missing functions are counted and compared with the requirements
specification, which can lead to an acceptable set of requirements for the stakeholder as
worth making operational, which is required by the addressed state. This metric helps to
obtain quality requirements and achieve the state addressed by helping to identify how
many functions are missing in terms of the specified functions.

Finally, we analyzed the alpha Software System and its states. The state operational is
chosen. The selection of the state is based on its checklist as well as for the alpha Re-
quirements. The checklist has three items, as shown in Table 2. The three items have to
be met in order to obtain the state.

Table 2. Operational state of the alpha software system

Checklist
Alpha state Items

Operational
The system has been made available to the stakeholders intended to use it.
At least one example of the system is fully operational.
The system is fully supported by the agreed service levels.

52 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

The process to select the measure for the operational (the system in use in a live environ-
ment) state is the same we implemented to select the measure functional coverage of the
alpha Requirements. We identify the characteristic usability as a direct measure to validate
and verify the state. Usability has six sub-characteristics: appropriateness recognizability,
learnability, operability, user error protection, user interface aesthetics and accessibility
[3]. We selected the sub-characteristic operability to verify and validate the state operatio-
nal; such sub-characteristic contains nine measures. The measure we chose for measuring
the operational state is operational consistency in use. This measure determines “to what
extent do interactive tasks have a behavior and appearance that is consistent both within
the task and across similar tasks” [3]. The measure equation is:

	 c = 1 − (α/β)	 (2)

	 α = Number of specific interactive tasks that are performed inconsistently.

	 β = Number of specific interactive tasks that need to be consistent.

As we mention before, the ISO/IEC 25023 standard does not assign ranges of values of
the measures.

Several operation patterns are recognized by means of user experience [9]. The chosen
measure is adequate for validating the consistency of interactive tasks and other tasks
and the way they are performed. The software system can be considered operational ba-
sed on the consistency of the task performance, since one of the checklist items requires
at least a fully operational example of the software system.

According to the ISO/IEC 9126 standard “metric is defined as a measurement scale and
the method used for measurement,” which are used for obtaining indicators. An indi-
cator is a metric or a combination of metrics that provides an important view of the
software product and helps to make better decisions during the software development
life cycle [20].

5.	 Conclusions

In this Chapter we explored the state of the art; presented a theoretical framework which
contains an introduction about ISO/IEC 25000 standard, ISO/IEC 9126 standard, and The
SEMAT kernel; presented new lines of research; and finally presented an analysis of the
measures of the ISO/IEC standard to determine which of them can be relate to the alpha
states of the SEMAT kernel. Concerning the state of the art, we have presented a rela-

53CHAPTER # 3 - ASSOCIATING QUALITY MEASURES TO THE ALPHA STATES OF THE SEMAT KERNEL

tionship between two alpha states—addressed requirements and operational software
system—and the ISO/IEC 25023 measures.

Measuring the alpha states by using the ISO/IEC 25000 measures guarantee a higher le-
vel of quality requirements and software systems based on the validity and acceptability
of this measures for verifying the quality of a software product.

6.	 Future work

SEMAT initiative includes the aforementioned seven alphas. We only presented two of
the seven alphas and analyzed the ISO/IEC 25023 measures for associating the alpha
states. As future work, we propose the exploration of other standards in order to eva-
luate and verify the states of the five remaining alphas, opportunity, stakeholder, work,
team, and way of working. In this chapter, we only focused on one state of the alpha
requirement and one state of the alpha software system; we propose another line of
research to relate the ISO/IEC 25023 measures to every state of both alphas in order to
verify and validate them during testing stages of the software development.

7.	 References

[1]	 A. Abran, R. Al-Qutaish “ISO 9126: Analysis of Quality Models and Measures,” In: Soft-
ware Metrics and Software Metrology, A. Abran (Ed.), Wiley-IEEE Computer Society,
New York, USA, pp. 205–228 (2010).

[2]	 Systems and software engineering – Systems and software Quallity Requirements
and Evaluation (SQuaRE), International Organization for Standardization, ISO/IEC
25000, 2014.

[3]	 Systems and software engineering – Systems and software Quallity Requirements
and Evaluation (SQuaRE) – Measurement of system and software product quality,
International Organization for Standardization, ISO/IEC 25023, 2016.

[4]	 D. St-Louis, W. Suryn, “Enhancing ISO/IEC 25021 quality measure elements for wider
application within ISO 25000 series,” in IECON 2012 - 38th Annual Conference on
IEEE Industrial Electronics Society, Canada, 2012, pp. 3120-3125.

[5]	 Essence – Kernel and Language for software Engineering Methods, Object Manage-
ment Group. 2015.

[6]	 C. Zapata, and I. Jacobson, “A first course in software engineering methods and
theory”, DYNA vol. 81, pp. 1–11, February 2014.

[7]	 I. Jacobson, P. Ng, P. McMahon, I. Spence, and S. Lidman, The Essence of Software
Engineering: Applying the Semat kernel, 1st ed, Boston, Pearson education: United
States of America, 2013.

54 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

[8]	 Information Technology - Software Product Quality - Product Quality- Part 1: Quality
Model, International Organization for Standardization, ISO/IEC 9126-1, 2008.

[9]	 Software Engineering - Product Quality - Part 2: External Metrics, ISO/IEC 9126-2,
2000.

[10]	 Software Engineering - Product Quality - Part 3: Internal Metrics, ISO/IEC 9126-3,
2000.

[11]	 Software Engineering – Software Product Quality - Part 4: Quality in use Metrics,
ISO/IEC 9126-4, 2000.

[12]	 A. Ravanello, L. Villalpando, J. Desharnais, A. April, and A. Gherbi, “Associating per-
formance measures with perceived end user performance: ISO 25023 compliant low
level derived measures” in Cloud computing 2015, France, 2015, pp. 120-125.

[13]	 R. Alnanih, O. Ormandjieva, and T. Radhakrishnan, “A New Quality-in-Use Model for
Mobile User Interfaces,” in 2013 Joint Conference of the 23nd International Work-
shop on Software Measurement (IWSM) and the Eighth International Conference on
Software Process and Product Measurement (MENSURA), 2013. pp 165–170.

[14]	 Zapata, J.C., Vianney, M.G., and Castro, L.F., “Tutorial sobre la iniciativa Semat y el
juego MetriCC,” in Congreso Colombiano de Computación, Colombia., 2013, pp. 1-3.

[15]	 J. M. Conejero, E. Figueiredo, Garcia, A. J. Hernández, and E. Jurado, “On the relation-
ship of concern metrics and requirements maintainability,” Information and Soft-
ware Technology vol. 54, pp. 212–238, February 2012.

[16]	 L. Spendla, p. Tanuska, and l. Smolarik, “Metric Proposal for System Testing Models
Verification for Safety Critical Systems,” in IEEE 11th International Symposium on
Intelligent Systems and Informatics, Serbia, 2013, pp. 87-92.

[17]	 B. Behkamal, M. Kahani, and M. K. Akbari, “Customizing ISO 9126 quality model for
evaluation of B2B applications,” Information and Software Technology vol. 51, pp.
599–609, March 2009.

[18]	 C. Zapata, Y. Montoya, “On the relationship of the ISO/IEC 9126 metrics and the
alpha states of the SEMAT kernel” in 2016 4th International Conference in Software
Engineering Research and Innovation (CONISOFT), Mexico, 2016, pp. 59-64.

[19]	 M. Saadatmand, A. Cicchetti, M. Sjodin, “Toward model-based Trade-off analysis of
non-Functional requirements,” in 38th Euromicro Conference on Software Enginee-
ring and Advanced Applications, Sweden, 2012, pp. 142-149.

[20]	 R. S. Pressman, Ingeniería del Software un enfoque práctico, 5th ed, C. F. Madrid, Mc
Graw Hill: España, 2002.

55

Chapter # 4
Computational tool for a

communication system for
persons with tetraplegia using

an eye-tracking sensor

Oscar Abraham Grijalva Hernández, María Trinidad Serna Encinas,
César Enrique Rose Gómez, Oscar Mario Rodríguez-Elías
Instituto Tecnológico de Hermosillo, División de Estudios de Posgrado e Investigación,
Maestría en Ciencias de la Computación
oagrijalva@gmail.com, tserna@ith.mx, crose@ith.mx, omrodriguez@ith.mx

1.	 Introduction

Nowadays, approximately 5% of Mexico’s population suffers from some type of impair-
ment, according to the National Institute of Statistics, Geography and Informatics (INEGI,
for its acronym in Spanish), which represents more than 5,700,000 people of all ages [1].
The motor impairment is affecting more people, and can be caused by diseases, acci-
dents, birth defects, and by the elderly, among others.

Tetraplegia is a type of physical impairment; it results in impairment of function in the
arms as well as typically in the trunk, legs and pelvic organs, including the four extre-
mities [2]. Tetraplegia develops when the spinal cord is injured, preventing the commu-
nication between the central nervous system and other organs and body structures [3].

The inability to express and communicate their basic needs affects the emotional state
of the person with the impairment. A person unable to express or communicate their
desires and needs are prone to depression, a condition that causes sadness and hope-
lessness [4].

Quadriplegia affects in a negative way the life quality, as well as the emotional status of
the people that have this condition. To bring the opportunity of communication to the
patients with this disease, is the reason for the implementation of a system for the com-
munication using an eye-tracking sensor, so they can express in a written and oral way.

56 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Therefore, the challenge was to solve the next problem: What functional factors must be
considered to design a friendly and intuitive graphical interface, such that the patient
with quadriplegia can have interaction and communication with relatives and medical
staff in a written and orally way?

In order to provide the ability to communicate to patients with this impairment, in this
paper we propose the implementation of a computational tool with a graphical interfa-
ce, through the use of an eye-tracking sensor, that allows the communication of quadri-
plegic patients using oral and written expressions.

This paper presents the design and development of the computational tool described
above, for which, in the next section the theoretical foundations that support the pro-
posal are presented, then, in the section 3, the methodology used to obtain the requi-
rements for the analysis and design of the graphical interface is showed, after that, in
sections 4 and 5 the development and the results are shown respectively, and finally, our
conclusions are set in section 6.

2.	 Theoretical Framework

This paper focuses on the design of a graphical interface to users with specials needs,
particularly patients with tetraplegia. In this sense, among the issues that are important
to understand, there are the impairment and impairments types, later is discussed the
tetraplegia as motor impairment. Also, it is important to identify the mechanisms by
which information may be provided by a quadriplegic patient, such as sensors, and par-
ticularly the eye-tracking sensor that was chosen for the proposed system.

2.1	 Impairment

Impairment is a term to define the problems that affect or diminish the functions or
body structures of a person, as anomalies or defects in the body’s organs, or the loss of
such organs. Impairment limits the participation of the person who has it in daily activi-
ties, due to the difficulties to perform different actions [5, 6].

Different types of impairment are classified as follows [7]:

•• Sensory and communication impairment. Such as visual and hearing impair-
ment. Also, those that are affecting or impeding the communication and language
comprehension.

57CHAPTER # 4 - COMPUTATIONAL TOOL FOR A COMMUNICATION SYSTEM FOR PERSONS WITH TETRAPLEGIA USING AN EYE-TRACKING SENSOR

»» Visual impairments. These include the complete or partial loss of vision and
other impairments that cannot be improved with the use of visual aids.

»» Hearing impairments. These consist of the loss of hearing in one or both ears.
»» Communication and language comprehension impairments. These implicate

the impairments to express and natural language understanding.

•• Motor impairments. These impairments affect the functioning of the upper extre-
mities, lower extremities, trunk, head and neck.

»» Lower extremities impairments. These are comprised of loss of movement of
the legs and related body structures.

»» Upper extremities impairments. These consist of complete or partial loss of
movement of the arms.

•• Mental impairments. Include the deficiencies in mental status, loss of memory, and
behavioral problems of the individual.

»» Intellectual impairments. These deal with lower than average intellectual
capacities.

»» Behavioral impairments. These include the changes in the behavior of those
who suffer them.

•• Multiple impairments. Are the cases in which there are two or more impairments,
hence, we talk about of multiple impairments, for instance, a cerebrovascular acci-
dent that affects motor and intellectual capacities of a patient.

2.2	 Tetraplegia

This term refers to impairment or loss of motor and/or sensory function in the cervical
segments of the spinal cord due to damage of neural elements within the spinal canal.
Tetraplegia results in impairment of function in the arms as well as typically in the trunk,
legs and pelvic organs, depending on the extension of the damage, the breathing and
speaking capabilities can also be affected. [2, 8].

 An injury to the spinal cord can be caused by an accident, a disease, a tumor, an electric
shock, poisoning or lack of oxygen, and it is not required that the spine is fully affected
to cause tetraplegia. When the spinal cord gets damaged, the nervous system finds itself
incapable of communicating signals to the parts of the body connected to the vertebrae

58 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

below the place of the injury; to cause tetraplegia, the upper section of the spine, known
as the cervical spine, must get damaged (see Figure 1).

Figure 1. Spine

Cervical 1-4: These are the first cervical of the spinal cord, such that the risk is high to get
impaired people. Patients with injuries at C3 cervical or higher may be unable to breathe
on their own, and they can need a respirator. Patients with lesions at C4 cervical can be
free of respiratory problems, but sometimes needs a respirator. These people can lost
movements and sensation in the extremities, its common that they have movements in
shoulders and neck.

Cervical 5: Patients with C5 cervical lesions have deltoid muscle and functional biceps.
They can slightly rotate the shoulders, hands and wrists but remain motionless. People
with lesions in C5 can feed themselves and perform most daily functions.

Cervical 6: Patients with C6 cervical lesions are able to widely rotate their shoulders,
bend their arms, but not extend them, and extend the wrists, and they can use the index
finger and thumb. Persons with C6 injuries can usually drive adapted vehicles and take
care of their own hygiene.

Cervical 7-8: Patients with lesions in cervical C7 and C8 have functional triceps, can bend
and straighten their arms and they have more control over hands and wrists, these
people can hold light objects, but with a limitation on his skill.

59CHAPTER # 4 - COMPUTATIONAL TOOL FOR A COMMUNICATION SYSTEM FOR PERSONS WITH TETRAPLEGIA USING AN EYE-TRACKING SENSOR

Lesions in the upper thoracic vertebrae (T1-T8), usually affect control of the upper torso,
limiting its movement. Lesions in the lower thoracic vertebrae (T9-T12), allow good con-
trol of the torso and abdominal muscles. Lesions in the lumbar vertebrae (L1-L5) allow
sending signals to the hip and legs of the patient. The sacral vertebrae (S1-S5), control
signals to the groin, feet, and parts of the legs.

2.3	 Ocular Sensors

A sensor is a device that allows us to perform a conversion of a signal from one physical
form to another different physical form corresponding, so that the signal can be mea-
sured or processed [9].

The most common types of sensors that are applied to intelligent systems are as follows
[10]:

•• Acceleration. Sensors used to measure acceleration vectors of the objects in which
they are used.

•• Light. They are used to measure the light intensity at a specific point, commonly
used to detect whether a device is within or outside a certain location.

•• Proximity. They are used to determine the proximity of an object or person relative
to the sensor.

•• Audio. They are used to measure the sound signals.

•• Temperature. These sensors are used to measure the temperature of a device or
place.

•• Movement. Motion sensors are useful for detecting movement patterns of objects
or persons in order to analyze their behavior or activity.

In our work we are interested in eye-tracking sensors, because patients with symptoms
of severe quadriplegia, as is particularly the case that has sought to address in this pro-
ject, may have not control of most of their muscles, and only can communicate through
eye movements.

The eye-tracking sensors measure movement done by one person with their eyes,
allowing them to control electronic devices by means of sight, and achieving interaction
without the need for hands. The “Eye Tribe Tracker” sensor was chosen for use with the

60 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

communication system for quadriplegics, this sensor monitors the pupils of the users,
identifying X and Y coordinates for each of their eyes, and calculating the specific point
of sight (see Figure 2) [11].

Figure 2. Eye Tribe Tracker sensor

2.4	 Related work

There exist several information systems developed for helping people to communicate
by means of proposals in the fields of augmentative and alternative communication. An
example is GESTELE, a system that allows users to communicate their ideas and moods,
using a virtual keyboard, and a set of icons which represent emotions [12]. Another
example is GazeSpeaker, a system focused on helping people with communicative di-
sabilities. GazeSpeaker also uses a graphical user interface to help users to choose an
option from a set of preselected phrases. This system can be also used with eye-tracking
sensors, such as Eye Tribe Tracker [13].

Although GESTELE uses a graphical interface to operate, it requires the user’s physical
interaction to choose options, therefore it has limitations that hinder its use with pa-
tients with severe motor impairments. On the other hand, Gazespeaker does not provide
functionalities to facilitate its adaptation to patients with severe tetraplegia whom eye
movements are partially compromised, as is our case. Additionally, both systems don’t
considers the use of alerts related to the needs of the patient.

3.	 Basic Functional Requirements

The main part of the work focuses on identifying the requirements of interaction bet-
ween the patient and the system. To determine these requirements, we have the support
of a patient presenting advanced tetraplegia, this patient does not have movement in
her upper and lower extremities as well as it is limited in her ability to speech. The pa-
tient has only eye movement, and mental and hearing abilities are normal. Due to the
particular situation of the patient, her interaction with family members, in particular
how to communicate was observed. This allowed defining the functional requirements
for the graphical interface.

61CHAPTER # 4 - COMPUTATIONAL TOOL FOR A COMMUNICATION SYSTEM FOR PERSONS WITH TETRAPLEGIA USING AN EYE-TRACKING SENSOR

Communication between the patient and her family or carer is done through a series
of options grouped by categories that represent physical issues, which are presented
to the patient orally, and which she selects the desired using the blinking of her eyes.
According to the selected category, corresponding subcategories are presented, and the
patient chooses one by blinking; the process continues until the patient has selected a
specific concept, for example, headache.

Functional requirement 1: According to the observations previously mentioned, it was
established as a basic requirement that the GUI system to be developed should present
content organized by categories, in order to facilitate the selection of deployed options
during patient interaction.

Through the interaction with the patient, we also found that the patient could only per-
form eye movement in ascending or in descending order. The gaze of the patient is
shown in Figure 3.

Figure 3. Patient gaze

Figure 3 shows the gaze of patient in a centered image, it can be seen how the patient
has difficulty for holding her left eyelid, a situation that causes that the readings of this
eye, obtained by the sensor eye-tracking, be unacceptable for usage in the graphical
interface. Therefore, as a functional requirement 2, only readings generated from the
movement of the right eye will be used. Figure 4 shows the patient eye movement with
upward direction, while Figure 5 shows the patient looks downward, where it can be seen
how the patient’s left eye is completely covered by the eyelid when looking downward,
causing these readings to be also unacceptable for use in the GUI.

During the interaction with the patient, it was found that there are cases in which the
patient seeks to communicate a need not preset to her families; in these cases, it is
presented to the patient two sets of letters to choose from, consonants and vowels, the
patient selects the desired group by blinking her eyes. If vowels are selected, her relati-
ves present to the patient each vocal individually, until one is selected. If consonants are

62 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

selected, the patient is asked to choose between two groups of letters; the first from B to
M, and the second one from N to Z, by selecting the group, the corresponding letters are
presented individually until one is selected. By selecting any of the previously submitted
letters, the relative or carer turns to perform the process to form a complete word. The
process is repeated for each word, so at the end, a phrase is obtained.

Figure 4. Patient looks up

Figure 5. Patient looks down

By analyzing the patient’s interaction with her caregiver, previously described, the
functional requirement 3 was acquired, which provides the patient with a mechanism
for choosing letters that allow her to form words and sentences to communicate non-
existent concepts in the categorized options.

Once identified these three basic functional requirements, we proceeded with the im-
plementation of the system, described below [14].

4.	 Development

To solve the problem discussed above, and following the three basic functional requi-
rements identified and described previously, a communication system for quadriplegics
is proposed. This system uses a graphical user interface, which allows the patient to
set her sights on the graphic components displayed in the interface and through the

63CHAPTER # 4 - COMPUTATIONAL TOOL FOR A COMMUNICATION SYSTEM FOR PERSONS WITH TETRAPLEGIA USING AN EYE-TRACKING SENSOR

eye-tracking sensor transform the gaze in coordinates representing specific points on
that interface. These points are used to perform certain actions, for instance, to enter
a category or display a phrase, and allow the patients to communicate their needs or
requirements to their caregivers.

4.1	 System architecture

The architecture designed for the communication system, shown in Figure 6, consists of
three modules: data input module, processing module and data output module. The first
two modules have been developed following the obtained functional requirements, and
the last one is being developed. The first two modules, the data input module and the
processing module directly affect the interaction between the patient and the graphical
interface presented in the communication system.

Figure 6. System architecture

Data input module: This module shows that reading of the data will be made by means
of a sensor, which must be calibrated, and subsequently used to record eye movements,
sending this data to the processing module.

Processing module: This module is divided into three processes, which are described below:

The data registration process: Focuses on the detection of the exact position that the
user is being focused on the screen.

64 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

The analysis process: This process make data analysis of the registration process, if the
condition is true when it is fulfilled, then the corresponding selection is executed.

The process of display: The display process is responsible for displaying on the screen
the elements corresponding to the user selection, as in a menu change, which can be
consulted in the database.

Data output module: This module is responsible for displaying the results on the screen,
and if it’s necessary play the corresponding audio.

4.2	 Analysis and design

In Figure 7 the context diagram for the communication system is shown.

Figure 7. Context diagram: Level 0 communication system.

The diagram has as main process the motion tracking. The process detects the user’s
gaze, and the patient can select the system options. Based on the option selected, an
analysis of the results is generated, which can be used to add new options to the system.

In Figure 8 the higher level diagram for the communication system is shown.

65CHAPTER # 4 - COMPUTATIONAL TOOL FOR A COMMUNICATION SYSTEM FOR PERSONS WITH TETRAPLEGIA USING AN EYE-TRACKING SENSOR

Figure 8. Higher level diagram: Level 1.

The previous diagram shows the system’s three main processes: The data input process,
the selection process and the process to generate results. The first process, the data
input is responsible for detecting the patient’s eye gaze. Then, in the selection process,
the controls over which the user fixated his sight are determined and, if the selection
is validated, its corresponding action is executed and the selection is stored in a data-
base. Finally, in the results process, the data corresponding to the previous selections
is shown on the graphical interface and, if it is needed, the data obtained are vocalized
through a voice synthesizer, the analysis of results allows the system administrator add
or modify content in the database.

Figure 9. Use case diagram

66 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Figure 10. Class diagram

Figure 9 shows the use case diagram for the proposed system. There are three actors:
Patient, Administrator and Registered User. The Patient is involved in the use cases: Cali-
brate and Option Selection. The Administrator is involved in the use cases for analyzing
the results, Login, and Catalogs, which includes the functionality of use cases Create, Up-
date and Delete. The Registered User can participate in use cases of Catalogs and Login.

Figure 10 shows the class diagram for the proposed system. The system’s classes are:
Catalogs, Users, User Profile, Categories, Phrases, Login, Operations, Main and Analysis
of Results. The classes of Users, User Profile, Categories and Phrases inherit the functio-

67CHAPTER # 4 - COMPUTATIONAL TOOL FOR A COMMUNICATION SYSTEM FOR PERSONS WITH TETRAPLEGIA USING AN EYE-TRACKING SENSOR

nality of the Catalogs class; the goal is to reuse the Create, Update, and Delete methods
using the object-oriented design.

Login class allows logging of users. Operations class registers readings of the coordina-
tes of the motion sensor and it is used to calibrate and select options on the screen. The
Main class updates the content displayed on the screen. The Analysis of results class
provides mechanisms to query the selected options within the system according to cer-
tain date parameters.

Activity diagrams are used to show the control flow and data flow within an operation
performed by the system. The execution shown in an activity diagram can be sequential,
concurrent, or both. These diagrams are composed of nodes of activity, which represent
the execution of code statements within the system, and have connections to other no-
des of activity. These activities are executed after the above has been completed.

Figure 11. Activity diagram for selection of options

Figure 11 shows the activity diagram for the Selection of Options, in which the patient
and the system are involved.

68 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Categories
ID_Category

Name

ID_Image

PreviousCategory

Images
ID_Image

Name

Value_Image

Phrases
ID_Phrase

Phrase

ID_Category

ID_Image

ID_Usuario

NumReproductions

ShortPhrase

IsAlert

Records
ID_Record

RecordDate

ID_Phrase

UserProfile
ID_UserProfile

Name

Users
ID_User

Name

ID_UserProfile

Password

Words
ID_Word

Name_Word

Num_selections

ID_User

Figure 12. Database diagram

Figure 12 shows the diagram of the database created for the communication system, the
database is composed of seven tables: the Users and UserProfile tables store informa-
tion related to the system’s users, as well as the available user profiles; the Categories,
Phrases and Images tables store information about the preset phrases in the system, as

69CHAPTER # 4 - COMPUTATIONAL TOOL FOR A COMMUNICATION SYSTEM FOR PERSONS WITH TETRAPLEGIA USING AN EYE-TRACKING SENSOR

well as its hierarchy of categories and subcategories; the Words table stores the words
used in the system and their frequency of use; the Records table contains the records of
phrases selected in the system.

4.3	 Communication system

In this section the implementation of the communication system is described.

Figure 13. Initial categories

Figure 13 shows the categories for the initial settings of the GUI. These options are dis-
played in two columns vertically, due to the patient’s inability to make a lateral mo-
vement with her eyes. The categories and subcategories of the interface use graphic
components called pictograms, which allow the patient to associate a symbol with an
established concept. These graphics have been developed by the Aragonese Portal of
Augmentative and Alternative Communication (ARASAAC, for its acronym in Spanish),
owned by the Provincial General of Aragon, and they’re used under the Creative Com-
mons License [15].

70 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Figure 14. GUI by selecting a subcategory and a phrase

Figure 14 shows the process of selecting a phrase in the GUI of the communication
system. To select a phrase, the patient must stare one of the options displayed on the
screen. The eye-tracking sensor, in turn, recognizes the look of the patient and converts
the position of the pupils to coordinates in the X and Y axes, representing a specific
point on the interface. If this point is on a graphical component, it is highlighted chan-
ging its background color.

71CHAPTER # 4 - COMPUTATIONAL TOOL FOR A COMMUNICATION SYSTEM FOR PERSONS WITH TETRAPLEGIA USING AN EYE-TRACKING SENSOR

By selecting a category, the interface displays the inner categories as well as options
to return to the previous level (with a direction arrow icon on the left), or access the
keyboard (icon with ABC). When the patient agrees to the latter one subcategory, the
interface displays the corresponding phrases options available (bottom columns); if the
patient selects one of these icons, the GUI displays the text related to that option at the
top, which is also reproduced by a speech synthesizer.

For example, selecting the category of pain, the interface displays the corresponding
subcategories, as shown in Figure 14, when choosing subcategory of head, the interface
displays the icons associated with it; by selecting the icon of the head, the interface has
the phrase “Me duele la cabeza” (I have a headache) in the text field on the icons, also
the phrase is played by the voice synthesizer.

Figure 15. Code to select an icon on the graphical interface

Figure 15 shows a method used for the selection of icons on the graphical user interface.
First, it is determined if the selected icon is an access button to a previous section or

72 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

to the GUI virtual keyboard, then, if the selected icon is a category or a phrase, its co-
rresponding content is displayed on screen and, if it is a phrase, its content is vocalized
through the voice synthesizer. If at least one alert condition is fulfilled, the content of the
selected phrase is sent to the person taking care of the patient.

To meet the requirement where the patient with the help of her family or caregiver can
form complex words and phrases not previously defined, it is incorporated into the gra-
phical interface a keyboard that allows the patient to select individual letters in an or-
derly way, forming words and phrases. This keyboard is presented in Figure 16.

Figure 16. GUI keyboard

As shown in Figure 16, the GUI keyboard consists of two vertical columns. The first co-
lumn, the column of letters, containing the 27 letters of the alphabet ordered based on
their frequency of use in the Spanish language. The second column consists of common
words suggested to the patient, according to the selected letter. When a new letter is
selected in the first column, the interface displays new suggestions based on the letters
selected by the patient, these suggested words are ordered based on their frequency
of use within the system. Initially, the user interface considers the most common words
in the Spanish language defined by the Royal Spanish Academy (RAE, for its acronym
in Spanish) [16], in order to provide suggestions to the user when it begins to use the
system. The words entered that are not in this catalog will be added to the system to be
suggested later.

73CHAPTER # 4 - COMPUTATIONAL TOOL FOR A COMMUNICATION SYSTEM FOR PERSONS WITH TETRAPLEGIA USING AN EYE-TRACKING SENSOR

To facilitate the selection of letters on the screen keyboard, a special keyboard based in
categories was also implemented, as it is shown in Figure 17.

Figure 17. Screen keyboard based in Categories

The categories use three groups of letters: consonants from letter B to letter M, conso-
nants from letter N to letter Z and the vowels. On the second column, the most common
words of the system are suggested to the user.

Figure 18. Categories based letter selection

On figure 18 the selection process of a letter contained in the first group of consonants
is shown. The group’s letters are divided into two parts, the first one, as it’s shown on

74 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

the figure, goes from letter B to letter G, and the second one goes from letter H to letter
M. The arrow pictured on the bottom of the right column allows the user to switch to the
second group of letters in this category. Once a letter is selected, the graphical interface
shows the most common words used on the system, suggested according to the user’s
current selection of letters.

5.	 Discussion

As it was shown on the previous section, the resulting graphical user interface complies
with the three basic functional requirements identified to support the needs of a patient
with severe tetraplegia. First, the incorporation of organized graphical icons adjusted
to the patient’s eye movement abilities. Then, the use of only the screen coordinates
generated from the patient’s right eye movement data. And finally, the addition of a me-
chanism that allows the patient to select letters, in order to form words and sentences
to communicate needs and ideas not yet present in the categorized options. This me-
chanism is also organized by categories to facilitate the search and selection of letters,
allowing the user to speed up the forming of words and sentences.

The graphical interface developed, unlike GESTELE, requires only eye movements to in-
teract with the content shown on the screen of the system, allowing persons with severe
motor impairment to communicate through it. Additionally, the proposed interface has
been adapted to a patient who, additionally to her severe tetraplegia, her eye move-
ments has limitations, therefore, unlike Gazespeaker, the patient does not require to
have her ocular movement entirely functional to use the graphical interface. Additio-
nally, we have also incorporated into the system, a module to send messages or alerts
to the relatives of the patient. This allows the patient to communicate her necessities
even when her relatives are not near, by using a wireless network or the cell telephone.

The computational tool of the communication system has been presented to the user
(patient real) in order to perform some acceptance and usability tests. The patient has
been able to use the interface to communicate with her relatives in an easy way. Howe-
ver, some difficulties have been observed, particularly, it has been difficult to the patient
to accustom to the new mechanism. Hence, it has been necessary that the tests be ca-
rried out in short duration sessions.

6.	 Conclusions

This paper describes the computational tool for a communication system for quadri-
plegic patients, which includes a module that displays graphics components categories,

75CHAPTER # 4 - COMPUTATIONAL TOOL FOR A COMMUNICATION SYSTEM FOR PERSONS WITH TETRAPLEGIA USING AN EYE-TRACKING SENSOR

subcategories and phrases associated with the pictograms described. The interface also
displays letters sorted based on their frequency of use, and suggested words based on
selected letters. This computational tool is designed to allow a quick and intuitive way of
communication to quadriplegic patients who lack their speech capabilities.

In order to validate the benefits and limitations of the proposed system, the graphical
interface, integrated to an assistive communication system, has been subjected to tests
by the patient for whom it was designed, and has gathered satisfactory results, as future
work we are planning to use it in patients with different levels of disabilities, including
several degrees of tetraplegia. For the above, efforts are under way to test the system
in patients treated within the CRIT Sonora (Children’s Rehabilitation Center in Sonora).

7.	 Acknowledgment

The first author wants to thanks the financial support from CONACYT for the scholarship
(grant 644447/571585). This study has been partially supported by the Tecnológico Nacio-
nal de México (TNM) (grant 5573.15-P).

8.	 References

[1] 	 INEGI. Censo de Población y Vivienda 2010: Tabulados del Cuestionario Ampliado.
[Online]. Available: http://www3.inegi.org.mx/sistemas/TabuladosBasicos/Default.
aspx?c=27303 (Visitado: 19 de Enero del 2016).

[2] 	 S. Kirshblum, S. Burns, F. Biering-Sorensen, W. Donovan, D. Graves, A. Jha, M. Johan-
sen, L. Jones, A. Krassioukov, M. Mulcahey, M. Schmidt-Read and W. Waring, ‘Interna-
tional standards for neurological classification of spinal cord injury (Revised 2011)’,
The Journal of Spinal Cord Medicine, vol. 34, no. 6, pp. 535-546, 2011.

[3] 	 M. Brodwin, “Spinal Cord Injury,” en Medical, Psychosocial and Vocational Aspects of
Disability, 3ra ed. Elliot & Fitzpatric, Inc., 2009, pp. 289-304.

[4] 	 “OMS | La depresión” http://www.who.int/mediacentre/factsheets/fs369/es/, (Visi-
tado: 26 de Enero de 2016).

[5] 	 J. Vázquez-Barquero Smith, ‘La Clasificación Internacional del Funcionamiento, de la
Discapacidad y de la Salud (CIF)’, Organización Mundial de la Salud. 2001. [Online]
Available: http://conadis.gob.mx/doc/CIF_OMS.pdf (Visitado: 26 de Enero del 2016).

[6] 	 ‘OMS | Discapacidades’, 2015. [Online]. Available: http://www.who.int/topics/disabi-
lities/es/. (Visitado: 26 de Enero del 2016).

[7] I	 NEGI. Clasificación de Tipo de Discapacidad. [Online]. Available: http://www.inegi.
org.mx/est/contenidos/proyectos/aspectosmetodologicos/clasificadoresycatalogos/
doc/clasificacion_de_tipo_de_discapacidad.pdf (Visitado: 27 de Enero del 2016).

76 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

[8] 	 L. Simpson, J. Eng, J. Hsieh and D. Wolfe and the SCIRE Research Team, ‘the Health
and Life Priorities of Individuals with Spinal Cord Injury: A Systematic Review’, Jour-
nal of Neurotrauma, vol. 29, no. 8, pp. 1548-1555, 2012.

[9] 	 R. Areny, Sensores y acondicionadores de señal, 4th ed. Barcelona: Marcombo, 2005,
pp. 1-8.

[10] 	M. Beigl, A. Krohn, T. Zimmer and C. Decker, ‘Typical Sensors needed in Ubiquitous
and Pervasive Computing’, Proceedings of INSS, pp. 22-23, 2004.

[11] 	 ‘Products – The Eye Tribe’, 2015. [Online]. Available: https://www.theeyetribe.com/
products/. (Visitado: 01 de Febrero del 2016).

[12] 	 N. Garay, J. Abascal and L. Gardeazabal, “Mediación emocional aplicada en siste-
mas de comunicación aumentativa y alternativa”, INTELIGENCIA ARTIFICIAL, vol. 6,
no. 16, 2002.

[13] 	 GazeSpeaker, ‘GazeSpeaker - Speaking with the eyes’, 2015. [Online]. Available:
http://www.gazespeaker.org/. [Visitado: 16 de Marzo de 2016].

[14] 	 O. Grijalva, M. Serna-Encinas, C. Rose, O. Rodriguez-Elias, J. Islas, ‘Design of a Gra-
phical Interface for a Communication System for Persons with Tetraplegia Using
an Eye-Tracking Sensor’ 2016 4th International Conference in Software Engineering
Research and Innovation (CONISOFT), Puebla, 2016, pp. 33-38.

[15] 	 “Portal Aragonés de la Comunicación Aumentativa y Alternativa” http://www.arasa-
ac.org/index.php/, (Visitado: 28 de Enero de 2016)

[16] 	 “Real Academia Española - CREA” http: //corpus.rae.es/lfrecuencias.html/, (Visita-
do: 28 de Enero de 2016).

77

Chapter # 5
Driving Security

Aware Android
Application Development

Based on Malware
Analysis Data Visualization

A. Rodríguez-Mota*, P.J. Escamilla-Ambrosio†, E. Aguirre-Anaya†,
R. Acosta-Bermejo† and L.A. Villa-Vargas†
*Instituto Politécnico Nacional
Escuela Superior de Ingeniería Mecánica y Eléctrica, Zacatenco, México City, México 07738
Email: armesimez@gmail.com
† Instituto Politécnico Nacional, Centro de Investigación en Computación, México City, México
Email: pescamilla@cic.ipn.mx

1.	 Introduction

Android is an operating system for mobile phones. However, it can be better descri-
bed as a middleware running on top of embedded Linux. The underlying Linux inter-
nals have been customized to provide strong isolation and contain exploitation. Each
application is written in Java and runs as a process with a unique UNIX user identity.
This design choice minimizes the effects of buffer overflows. In this structure, all inter-
application communication passes through Android’s middleware, with a few excep-
tions [1].

The Android middleware defines four types of interprocess communication (IPC). The
types of IPC directly correspond to the four types of components that make up applica-
tions. Figure 1 describes the main Android components. Generally speaking, IPC takes
the form of an Intent message. Intents are either addressed directly to a component
using the application’s unique namespace, or more commonly, to an action string. De-
velopers specify Intent filters based on action strings for components to automatically
start on corresponding events [1].

78 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Figure 1. Main Android components, adapted from [1] as presented in [2].

The Android build process provides project and module build settings so that Android
modules are compiled and packaged into .apk files, the containers of application bina-
ries, based on the developer build settings. The apk file of each application contains all
of the information necessary to run an application on a device or emulator [3]. Figure 2
shows the main contents of an apk file.

Figure 2. Main contents of an apk file.

79CHAPTER # 5 - DRIVING SECURITY AWARE ANDROID APPLICATION DEVELOPMENT BASED ON MALWARE ANALYSIS DATA VISUALIZATION

2.	 Android security

Android protects applications and data through a combination of two enforcement me-
chanisms, one at the system level and the other at the IPC level, Figure 3 provides a
general representation of such mechanisms. IPC mediation defines the core security
framework but it builds on the guarantees provided by the underlying Linux system [4].

Figure 3. General representation of Android’s
security enforcement mechanisms, adapted from [1].

In the general case, each application runs as a unique user identity, which lets Android
limit the potential damage of programing flaws. IPC is not limited by user and process
boundaries. In fact, all IPC occurs via an I/O control command on a special device node,
/dev/binder. Because the file must be world readable and writable for proper operation,
the Linux system has no way of mediating IPC. Although user separation is straight-
forward and easy understood, controlling IPC is much more subtle and warrants careful
consideration [4].

As the central point of security enforcement, the Android middleware mediates all IPC
establishment by reasoning about labels assigned to applications and components. A
reference monitor provides mandatory access control (MAC) enforcement of how appli-

80 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

cations access components. In its simplest form, access to each component is restricted
by assigning to it an access permission label. Developers assign applications collections
of permission labels. When a component initiates IPC, the reference monitor looks at the
permission labels assigned to its containing application and allows IPC establishment
to proceed if the target component’s access permission label is in that collection. The
developer assigns permission labels via the XML manifest (AndroidManifest.xml) file that
accompanies every application package, see Figure 2. Because Android’s policy enforce-
ment is mandatory, all permission labels are set at install time and cannot change until
the application is reinstalled [4].

The Android community has made huge progress in improving security. Features such as
full-disk encryption, restricted profiles, improved authentication and SafetyNet all give
Information Technology (IT) shops better Android device management and security ca-
pabilities. But IT manager would be well-served to pay careful attention to the potential
pitfalls that remain. In this context, five main Android device security challenges to focus
on in the coming years are fragmentation, malware, management tool selection, user
behavior, and compartmentalization [5].

2.1	 Fragmentation

Perhaps the single biggest criticism that Android has received has to do with the diversi-
ty of its ecosystem. As an open source OS, Android has a wide range of modified versions
implemented on a significant number of devices [5]. A solution to the Android fragmen-
tation problem is to limit the number of devices and operating system versions allowed,
whether they are corporate-issued or Bring Your Own Device (BYOD). These approaches
facilitate IT control over Android device management and security in production envi-
ronments [5].

Fragmentation is a serious problem with Android devices. Each manufacturer puts its
own spin on a device, providing features and configuration options different from other
Android devices. Even if all devices are running the latest Android version (currently An-
droid 6.0), administrators must still contend with vendor-specific hardware features and
software tweaks [6].

2.2	 Malware

One of the most effective solutions to the problem of malware is the use of mobile
application management, which can prevent an infected app from contaminating an
entire device. Acceptable use and security policies need to be in place before deploying

81CHAPTER # 5 - DRIVING SECURITY AWARE ANDROID APPLICATION DEVELOPMENT BASED ON MALWARE ANALYSIS DATA VISUALIZATION

any management products, however, these policies must align with overall organizatio-
nal objectives. Antimalware apps are available, but their effectiveness is controversial,
and IT should carefully set them before deployment commences [5].

2.3	 Management tool selection

Enterprise mobility management (EMM) suites can help improve Android device security
with their content, application and identity management features. The key elements to
look for are cross-platform support, especially across multiple Android releases, and in-
tegration with other operational management systems. Those capabilities are becoming
more important to avoid overlapping or conflicting features, as well as to maximize IT
productivity [5].

2.4	 User behavior

Encouraging users to comply with simple, straightforward policies can solve many
Android device security problems. But if even one user fails in this regard, it can lead
to quite the opposite. Policies should require the use of device passcodes, appro-
priate backup and storage and adherence to best practices for avoiding social en-
gineering attacks. The biggest problem area regarding user behavior has to do with
apps. Even though Android apps provide permissions notifications, mobile content
and application management are clearly more critical than ever to control the flow
of data among apps; and do not hesitate to blacklist third-party apps that raise se-
curity concerns [5].

2.5	 Compartmentalization

In the case of BYOD situations, users expect to do whatever they want with what are,
after all, their own devices. EMM is the backbone of good organizational security prac-
tice for now, but dual persona and mobile virtualization which separate a single de-
vice into separate work and personal environments will become more common. The
good news is that Android device management supports these technologies, where
iOS does not [5].

The open source nature of Android should provide some comfort that the architectu-
re and security mechanisms of a given implementation are appropriate, effective and
uncompromised. Many, however, remain skeptical of open source in general and of An-
droid in particular, thanks to past problems with app security. Vigilance remains a core
requirement in all IT departments [5].

82 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

3.	 Malware Analysis

Malware analysis is a process in which malware is taken apart for studying its code struc-
ture, operation and functionality. It is conducted with specific objectives which include:
to understand the vulnerability that was exploited, to study the severity of the attack and
counteracting measures, to penetrate into the compromised data in order to investigate
its origin and to obtain information about other compromised machines [7].

In general, detection techniques for Android malware use statically extracted data from
the manifest file or from Android API function calls, as well as dynamically obtained in-
formation from network traffic and system calls tracing [8]. Most of current systems used
to detect malicious code are largely based on syntactic signatures and employ static
analysis techniques.

Privacy-violation weaknesses occurring on mobile devices can lead to the disclosure of
location, sensitive images, and data entered from the keyboard or displayed on the screen
and other personal information. While smartphones can be used for viewing, manipu-
lating, and storing local data, these devices also allow users to interact with a world of
interconnected resources from the convenience of their hands. Through communication
protocols, both sensitive and benign data is shared between remote services in different
devices [9]. In the context of Android, privacy violation weaknesses can be related to a set
of security risks, Figure 4 presents 10 of the biggest Android security risks.

Figure 4. Android Security Risks [10], as presented in [11].

83CHAPTER # 5 - DRIVING SECURITY AWARE ANDROID APPLICATION DEVELOPMENT BASED ON MALWARE ANALYSIS DATA VISUALIZATION

3.1	 Analysis Techniques

Malware analysis and detection schemes can be deployed on both mobile devices and
servers. On the one hand, client side security solutions include anti-virus or antimalware
applications installed on mobile devices to protect against known applications installed
on mobile devices based on knowing signatures of malicious applications. However, insta-
lling an application to provide real time protection on a mobile device often decreases its
performance and battery life [12]. On the other hand, remote or cloud-based solutions are
designed to offload a significant part of their operation to the cloud, where their computa-
tionally intensive algorithms and analyzes are running. Although this type of mechanisms
saves system resources, on their own, they cannot offer real-time protection, and they can
leave devices vulnerable when connectivity with the server is poor [13].

3.2	 The Hybrid Approach

The implementation of hybrid solutions for malware analysis and detection is not a new
approach in the PC antimalware arena. However, only a few attempts to explore such
approaches have been reported in the malware detection for mobile device literature
[14]. In this sense, it can be considered that there is a big research area to explore in this
field. Consequently, in this chapter, it is discussed an approach that has been referred to
as “2-hybrid”. The term 2-hybrid is used in order to reflect the intentions to provide local
(host) and remote (server/cloud) implementation and static dynamic analysis capabilities.
This scheme aims to provide a balanced and efficient analysis-and-detection framework
in terms of time, resources consumption and performance. A conceptual representation of
the intended system is presented in Figure 5.

Figure 5. The 2-hybrid system general conceptual representation [14].

84 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

4.	 Android development security checks

As the number of threats has increased over the time Android OS has matured, Goo-
gle and the Open Handset Alliance (OHA) have led many efforts towards reducing the
impact of malicious attacks targeted to this OS. Interestingly, developers following bad
software development practices continue to be an important risk factor, mainly due to
the lack of knowledge or misuse of Android security features.

In the particular case of the Androids permission model, this is a complex situation
as developers are able to add permissions and access features of the mobile device
if needed; these features and permissions most often add value to the application.
However, developers, using the same permissions that create value for the applica-
tions, may also create malicious applications that can harm users or their devices.
Unfortunately, the only solution for checking if an application is malicious or not is to
carry out a sanity check. It means the user should read carefully what the application
does and check the permission list to identify if the application really does need the
permissions to work properly.

Many users do not know much about the underlying technology being used and what
permissions are needed for certain features [15]. Tables I, II, and III, present some
Android permissions that can harm the functionality of other applications, operating
systems or hardware sensors.

4.1	 Promoting Security Best Practices

Mastering the use of permissions is not a simple task, even for developers, as it re-
quires a profound Android specification knowledge. Various efforts have been made
by different entities, aiming to define and communicate the main security conside-
rations that would help to produce more secure applications, as well as to improve
user security practices. Some of these initiatives are briefly presented in the following
paragraphs.

•• Android Security Best Practices: The Android Security Best Practices document
[16] provides a comprehensive view of the diverse security aspects to be conside-
red during application development. A synthesis of such guidelines is shown in
Figure 6. In some cases, these practices require the review of some static parame-
ters either at the level of the AndroidManifest.xml file or the Java code. Some of
these parameters have been represented as light gray colored boxes in Figure 6.

85CHAPTER # 5 - DRIVING SECURITY AWARE ANDROID APPLICATION DEVELOPMENT BASED ON MALWARE ANALYSIS DATA VISUALIZATION

•• OWASP Mobile Application Security Guide: The Open Web Application Security
Project (OWASP) has proposed a set of security guidelines which are contained
in the Mobile Application Security Guide document [17]. In this case, the check
list contains general aspects applicable to most mobile devices, as well as a set
of considerations specific to the Android OS powered devices. Figure 7 presents
a synthesized representation of the static check points of this Security Guide,
specific to Android. In this figure it has been included the “Store Sensitive Infor-
mation outside App Sandbox”, highlighted with a light gray background, which the
Application Security Guide mark as a feature that is obtained dynamically. This
aspect is included in the figure, although marked as dynamic in the Guide, as it
is possible to identify some permissions, as well as few static parameters, which
grant the application access to external storage devices. After comparing Figures
6 and 7, it can be observed that the OWASP Guide document is more general than
the Android Security Best Practices.

Table 1. A list of some android permissions that can harm the functionality of other applica-
tions, operating systems or hardware sensors, adapted from [15].

Permission Related Risks

Change Network State Can change whether or not the device is connected to a network.

Keyguard Can keep the Android device unlocked and unprotected, causing
unwanted calls.

Modify Audio Settings May affect the usability of the device or impact other
applications.

Set Time Zone May affect the usability of the device or impact other
applications.

Write External Storage

May result in a number of effects being realized including
harming the actual memory of the device. Many writes and
deletes may break memory segments.
An application may fill the devices memory storage such that
a victim would be unable to add more data or install required
applications.

Write Contacts

Similar effects as
WRITE EXTERNAL STORAGE.
By adding contacts malware could trick the user into calling
unwanted numbers, change phone numbers of certain contacts
or by adding contacts malware could fill the space for contacts
on a SIM card.

Kill Background Processes
It is not necessarily malicious and would not do much harm, but
it could impact the usability of the device, for example by killing
processes without user’s consent.

86 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

•• CIS Security Concerns: The security concerns addressed by the Center for Internet
Security (CIS) [18] includes 41 main settings that, according to this document, users
can and should configure on their Android devices. These settings can be divided
into seven distinct categories, see Figure 8. Under comparison, this document has
a more general perspective when compared with the others two presented above,
but it provides a good reference point..

Table 2. A list of some android permissions that can harm the functionality of other applica-
tions, operating systems or hardware sensors (continuation), adapted from [15].

Permission Related Risks

Set Wallpaper It is not necessarily malicious and would not do much harm,
but it could impact the usability of the device.

Vibrate It is not necessarily malicious and would not do much harm,
but it could impact the usability of the device.

Call Phone

Used to call a phone number.
Is one of the most used permissions in revenue generating
malicious applications?
Malware will just randomly or on a certain event, call a
premium number.

Process Outgoing Calls
Is able to intercept an outgoing call and change it. This could
be used maliciously to redirect all calls to some premium
number.

Send SMS It can be used by attackers in their applications and send
messages to premium numbers.

Send MMS It can be used by attackers in their applications and send
messages to premium numbers.

Write SMS
May be used for writing SMS, however, the SMS may not be sent
without the user’s confirmation. It is safer if an application has
this permission, but the victim could still be tricked to execute
the sending of the message.

Internet
It is no dangerous by itself, it allows access to the Internet for
applications, but can be used for transfer of personal data,
documents or files of the victim.

Get Accounts

Allows access to the list of accounts in the account service.
This is a lower risk permission than the MANAGE ACCOUNTS
permission.
An application can just get the basic properties of an account,
such as the user name.

87CHAPTER # 5 - DRIVING SECURITY AWARE ANDROID APPLICATION DEVELOPMENT BASED ON MALWARE ANALYSIS DATA VISUALIZATION

Table 3. A list of some android permissions that can harm the functionality of other applica-
tions, operating systems or hardware sensors (continuation), adapted from [15].

Permission Related Risks

Manage Accounts

An application using this permission can get more than basic
properties of an account and is able to do all the needed
actions with existing accounts and to add new accounts.
As a Google security measure an application may only delete/
modify an account it created itself, an application may, of
course, create any new account and manage that.

Use Credential
Is used to log into an account. In most cases, “credentials just
means the corresponding authenticator creates a fitting token
and hands that over.

Manage Documents
Allows an application to manage access to documents. This
permission can give access to documents that can be then
read.

Read External Storage Used for reading files.

Read Sms
Used for reading SMS.
This permission allows access to SMS log and works in
conjunction with the RECEIVE SMS permission.

Receive Sms Enables the application to be notified and read the incoming
SMS message.

Read Call Log Allows an application to read the call log. Work in conjunction
with the PROCESS OUTGOING CALLS permission.

Read Contacts Allows an application to read the list of contacts from the
mobile device.

Read Profile Allows an application to read the user’s personal profile data.

After reviewing this document, it is possible to identify multiple coincidences between
these initiatives, among them the Permissions requests aspect.

5.	 Garmdroid

GARMDROID, is a 2-hybrid Android malware analysis and detection system under deve-
lopment [14]. Its name is the result of the fusion of the words Garm and Android, where
Garm is described in the Norse mythology as a watchdog that guards Hels gate [19].
Broadly, the proposed system is categorized as 2-hybrid to reflect the fact that it inte-
grates static and dynamic malware analysis techniques and local and remote analysis
execution. GARMDROID general concept is presented in Figure 9. Additionally, Figure 10

88 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

presents GARMDROID current architecture. A detailed description of the system design
and implementation is out of the scope of this chapter.

Figure 6. Android security best practices, adapted from [16].

GARMDROID functionality is based on the extraction of static and dynamic mobile ma-
lware features. A taxonomy of mobile malware features is presented in Figure 11.

Since the scope of the proposed system is broad, as it can be inferred from the set of
mobile malware features in Figure 11, the current description is focused on the utility of
extracting and analyzing the Permissions and Hardware components static features of
applications, aiming to help software developers to identify security risks and bad prac-
tices for Android application development. Figures 12, 13, and 14 present the GARMDROID
components related to the extraction and visualization of permissions and hardware

89CHAPTER # 5 - DRIVING SECURITY AWARE ANDROID APPLICATION DEVELOPMENT BASED ON MALWARE ANALYSIS DATA VISUALIZATION

features. In this respect, it is important to consider that several research articles have
shown that users respond better to visual information, in terms of Android permissions
and other contexts [21, 22, 23, and 24].

Figure 7. Selected OWASP Static (Client side) checks, adapted from [17].

Figure 8. The seven categories of settings that Android users should configure, according to the
Center for Internet Security (CIS) Security Concerns description, adapted from [18].

90 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

6.	 Results

A set of results are presented in this section with a twofold purpose: to demonstrate
GARMDROID operation and to provide evidence of the utility of the obtained results for
identifying security threats related to malicious or bad design practices. A test version of
GARMDROID is available at www.garmdroid.org.

Figure 9. General representation of the proposed 2-hybrid malware analysis and detection
framework [14].

Figure 10. GARMDROID system architecture.

91CHAPTER # 5 - DRIVING SECURITY AWARE ANDROID APPLICATION DEVELOPMENT BASED ON MALWARE ANALYSIS DATA VISUALIZATION

Brief descriptions of the three selected cases are presented inTable IV. The descriptions
refer to Android applications identified as benign when analyzed through VirusTotal [25]
free service. It is important to observe that they were downloaded from third-party sto-
res on the Web.

Figure 11. Taxonomy of Mobile Malware Features [14], adapted from [20].

Figure 12. GARMDROID welcome page.

Figure 13. Permissions representation using an array of dots for simple visualization,
and a text box.

92 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

A. 	 Hardware-Test app

In this case, see Figure 15, the app requests access to a big set of hardware-features: Ac-
celerometer, Audio, Barometer, Bluetooth, Camera, Compass, Gyroscope, Light, Location,
Microphone, NFC, Proximity, Scree, Telephony,

Figure 14. Visualization of hardware features.

Table 4. Application analysis sample cases.

Application Type Risk observed

Hardware-Test Granting a big set of permissions and access to many hardware features
represents a high security risk.

IR-remote control Excessive hardware-features requests represent a sign of malicious
intents or bad design practices.

Lighting Inconsistency between the advertised functionality of an application and
the hardware features requests must raise security concerns.

Figure 15. Hardware features requested by a hardware-test sample app,
marked with a red background.

93CHAPTER # 5 - DRIVING SECURITY AWARE ANDROID APPLICATION DEVELOPMENT BASED ON MALWARE ANALYSIS DATA VISUALIZATION

Touchscreen, USB and Wi-Fi

In general, it could be observed from these results that there are not inconsistencies
between the requested hardware-features and the supposed functionality. However, de-
velopers and system integrators must be aware of the high risk involved when installing
applications requesting a big set of permissions.

B.	 IR remote control app

The second selected case presents a pair of apps advertised as IR remote controls in the
application store, see Figure 16.

Figure 16. Hardware features requests from two different IR remote control apps.
Requested features are marked with a red background.

In this scenario, it is observed that the number and type of requests of hardware-fea-
tures done by the first app, (a) in Figure 16, includes not only the IR feature but Blue-
tooth, Wi-Fi, Screen, and Touchscreen too. It can be argued that remote control functions
can be provided through the use of Bluetooth and Wi-Fi features too, but either from
a security or software development point of view there exist inconsistencies between
the functionalities provided by the app and those required (or advertised). This should
raise questions in turn of whether the design specification was not properly followed,
bad development practices have drawn the software development process or there is a
malicious intention.

C. 	 Lighting app

In this final case, the requested hardware-features by a Lighting app are presented,
see Figure 17, where once again inconsistencies are observed between the presuming
functionality and the hardware requests. Besides the Camera, it is observed that this

94 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

application requests location and WiFi features. Thus, there exists either a bad descrip-
tion of the app in the store, bad design practices or malicious intentions in this piece
of software.

Figure 17. Hardware features requested by a lighting application.

7.	 Conclusions

On the one hand, the high demand for Android applications combined with the fast ex-
pansion of Android OS in the mobile marked has contributed not only to attract the at-
tention of malicious developers and criminals but to force genuine developers to adopt
this technology at a fast pace. In this sense, security has been neglected in order to
prioritize delivery and achievement of short time releases.

On the other hand, the current increase in demand for solutions to improve security in
mobile applications has produced a continuous development of tools and techniques
aimed to prevent or at least to reduce security threats in this technological segment.
However, security analysis and detection practices are hardly adopted by developers
and managers. One could argue that complexity or the need of specialized knowledge
may play an important role in the slow adoption of security practices into the mobile
software development processes. But the daily practice has shown that there is space
to perform some level of security tests during development and systems integration by
providing easy to use tools or higher level representations of security information more
comprehensible for non-specialized users. In this context, the development of systems
and tools which provide a higher representation of security analysis data seems a good
option to permeate security practices into the software development process and con-

95CHAPTER # 5 - DRIVING SECURITY AWARE ANDROID APPLICATION DEVELOPMENT BASED ON MALWARE ANALYSIS DATA VISUALIZATION

sequently reduce bad practices and possible vulnerabilities left unintentionally. Thus,
we believe that the architecture and functionalities proposed in this work contribute to
bring security data analysis and practices to a higher number of developers and other
subjects involved in the Android mobile software development only requiring an Inter-
net connection.

Additionally, it is considered that the results presented, represent a good probe of the
utility of malware analysis and detection data as an important asset for software deve-
lopers, helping to reduce bad practices and design errors. Moreover, these results give
an indication that there is need for further development of high level visual representa-
tions of security data with affordance and easy to use qualities.

Finally, as GARMDROID is still a work in progress, it is considered that further integration
of other malware analysis and detection techniques will provide new insights about data
visualization and malware detection that will help to refine current approaches and to
develop new ones.

8.	 Acknowledgment

This work was supported by the Mexican National Council of Science and Technology
(CONACYT) under Grant 216747 and in part by IPN under Project SIP-20161697.

9.	 References

[1]	 W. Enck, M. Ongtang, and P. McDaniel, On Lightweight Mobile Phone Application Cer-
tification, CCS’09 Proceedings of the 16th ACM conference on computer and Com-
munications Security, ACM, New York, NY, USA, 2009, pp. 235-245.

[2]	 A. Rodríguez-Mota, P. J. Escamilla-Ambrosio, E. AguirreAnaya, R. Acosta-Bermejo and
L. A. Villa-Vargas, Improving Android Mobile Application Development by Dissecting
Malware Analysis Data, 4th International Conference in Software Engineering Re-
search and Innovation (CONISOFT), 2016, pp. 81 - 86.

[3]	 Android Developers, Building and Running Overview, http: //developer.android.
com/intl/es/tools/building/index.html, 29 1 2016.

[4]	 W. Enck, M. Ongtang and P. McDaniel, Understanding Android Security, Security &
Privacy, IEEE, vol.7, no.1, Jan.-Feb. 2009, pp. 50-57.

[5]	 C. Mathias, Top five Android device management security challenges, TechTarget,
http://searchmobilecomputing.techtarget.com/tip/ Top-Five-Android-device-ma-
nagement-security-challenges, 2 2 2016.

96 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

[6]	 R. Sheldon, Android OS fragmentation curbs enterprise adoption, TechTarget,
http://searchmobilecomputing.techtarget.com/tip/Android-OS-fragmentation-
curbs-enterprise-adoption, 2 2 2016.

[7]	 K. Kendal and C. McMillan, Practical Malware Analysis. Black Hat Conference, USA,
2007.

[8]	 V. M. Afonso, M. Favero de Amorim, A. R. A. Gregio, G.´ Barroso Junquera and P. L´ıcio
de Geus, Identifying Android malware using dynamically obtained features, Journal
of Computer Virology and Hacking Techniques, Springer, vol. 11, no.1, February. 2015,
pp. 9-17.

[9]	 D. Childs, A. Gilliland, B. Gorenc, H. Goudey, A. Gunn, A. Hoole, J. Lancaster, S. Muthu-
rajan, J. Wook Oh, Y. Tsipenyuk O’Neil, J. Park, , O. Petrovsky, J. Sechman, N. Shah, T.
Sotack and V. Svajcer, The HPE Cyber Risk Report 2015. HP, 2015.

[10]	 L. Phifer, Top 10 Android Security Risks, http://www.esecurityplanet.com/views/ar-
ticle.php/3928646/ Top-10-Android-Security-Risks.htm, 14 05 2015

[11]	 A. Rodríguez-Mota, P.J. Escamilla-Ambrosio, J. Happa and E. Aguirre-Anaya, GARM-
DROID: IoT Potential Security Threats Analysis through the Inference of Android
Applications Hardware Features Requirements, AFI 360 Conference Track on Future
Internet and Internet of Things Applications, 2016

[12]	 N. Penning, M. Hoffman, J. Nikolai, and Y. Wang, Mobile malware security challeges
and cloud-based detection, Collaboration Technologies and Systems (CTS, 2014 In-
ternational Conference,2014, pp. 181-188.

[13]	 D. Damopoulos, G. Kambourakis and G. Portokalidis, The Best of Both Worlds: A
Framework for the Synergistic Operation of Host and Cloud Anomaly-based IDS for
Smartphones, Proceedings of the Seventh European Workshop on System Security,
ACM, New York, NY, USA,2014, pp. 6:1–6:6.

[14]	 A. Rodríguez-Mota, P.J. Escamilla-Ambrosio, S. MoralesOrtega, M. Salinas-Rosales
and E. Aguirre-Anaya, Towards a 2-hybrid Android Malware Detection Test Fra-
mework, 2016 International Conference on Electronics, Communications and Com-
puters (CONIELECOMP), Cholula, 2016, pp. 54-61.

[15]	 N. Milosevic, Android Security: Malicious use of Android permissions, Digital Foren-
sics Magazine. Issue 18, February, 2014, pp. 28–31.

[16]	 Android developer, Security Tips, http://developer.android. com/training/articles/
security-tips.htm#Dalvik, 14 06 2016.

[17]	 OWASP, OWASP Mobile Application Security Guide, https://drive.google.com/file/d/
0BxOPagp1jPHWYmg3Y3BfLVhMcmc/view? pref=2&pli=1, 5 05 2016.

[18]	 D. Vecchiato, M. Vieira and E. Martins, The Perils of Android Security Configuration,
Computer, IEEE, 2016, Vol. 49, No. 6, pp. 15–21.

[19]	 Wikipedia, Garmr. Wikipedia, https://en.wikipedia.org/wiki/ Garmr, 15 12 2015.

97CHAPTER # 5 - DRIVING SECURITY AWARE ANDROID APPLICATION DEVELOPMENT BASED ON MALWARE ANALYSIS DATA VISUALIZATION

[20]	 A. Feizollah, N.B. Anuar, R. Salleh, and A. W. A. Wahab. A review on feature selection
in mobile malware detection. Digital Investigation, Elsevier, 2015, pp. 22-37.

[21]	 J.R.C. Nurse, I. Agrafiotis, M. Goldsmith, S. Creese and K. Lamberts, Two Sides of the
Coin: Measuring and Communicating the Trustworthiness of Online Information,
Journal of Trust Management, Vol. 1, No. 1, pp. 1–20, 2014.

[22]	 L. Krauss, I. Wechsung and S. Mller, Using Statical Information to Communicate An-
droid Permission Risks to Users, 4th International Workshop on Socio-Technical
Aspects in Security and Trust (STAST’14), Vienna, Austria, 2014, pp. 48–55.

[23]	 C. Eze, J.R.C. Nurse and J. Happa, Using Visualizations to Enhance Users’ Unders-
tanding of App Activities on Android Devices, 2016, Journal of Wireless Mobile Net-
works, Ubiquitous Computing, and Dependable Applications, Innovative Informa-
tion Science and Technology Research Group, Vol. 7, pp. 39–57.

[24]	 M. Hettig, E. Kiss, J. Kassel, S. Weber, M. Harbach, and M. Smith, Visualizing Risk by
Example: Demonstrating Threats Arising from Android Apps, Symposium on usable
Privacy and Security (SOUPS’13), Newcastel, UK, 2013, pp. 1–2.

[25]	 VirusTotal. https://www.virustotal.com/es-mx/.

98

Chapter # 6
A Methodology to Assist Novice
Engineers to Produce Quality
Research and Development
Projects

Josefina Guerrero-García1, Juan González-Calleros1, Jaime Muñoz-Arteaga2,
Arturo Morales1 e Ivonne Monarca1

1	 Facultad de Ciencias de la Computación, Benemérita Universidad Autónoma de Puebla
2	 Facultad de Ciencias de la Computación, Universidad Autónoma de Aguascalientes

jguerrero,juangonzalez{@cs.buap.mx}, jmunozar@correo.uaa.mx

1.	 Introduction

Producing quality products is always desired when we start a project. A quality pro-
duct is assumed to be the one that has the expected functionality but also satisfies
users expectations. With regard to the functionality, the development must focus not
just on the running product but also in the documentation describing the product. For
decades this has been a problem for undergraduate students or naïve engineers [1,
5]. Some of the common problems reported in the literature are related to: bad use of
name conventions or semantics [1, 5, 7, 14, 15, and 16], misconceptions of abstraction
levels [1], cardinality [1], tools and visual syntax [2,8], evolutionary design missing [1],
cognitive load to differentiate concepts [5,9], limited information processing capabi-
lities [6]. If people are not good at it, why we keep promoting their use? So authors
argue that they communicate information more effectively than text [5], an assump-
tion that we keep considering while teaching but with poor results while evaluating
students.

As reported in [5, 7, 14, 15, and 16], the lack of semantics is one of the common pro-
blems. Current mapping notations are not clear to what real world they have a corres-
pondence. Existing metaphors are not easy to understand, thus creating and reading
diagrams is not easy for novice learners due to the cognitive load. Attention must be
paid to the usability of symbols used in the notations [6, 16] trying to be mire cognitive
effective [7].

99CHAPTER # 6 - A METHODOLOGY TO ASSIST NOVICE ENGINEERS TO PRODUCE QUALITY RESEARCH AND DEVELOPMENT PROJECTS

In a previous work [30] we presented our findings of three years of research with se-
nior year students while working on a one-year project. With the following research
questions: is it possible to improve the quality of the visual notations for analyzing and
design software, by empowering students with decision making about what to use and
how to use it? As promoted in an agile paradigm, empowering teams is a recommended
practice for a successful project. The only condition is to have an agreement with the
whole team. The goal is to help them to create quality models and contributing to have
a better understanding of the notations among our community.

For this purpose, we conducted a set of experiments, the first year we just simply gui-
ded students towards the correct use of existing notations and adopting a waterfall
methodology for the development of the project. Notations used during our research
was: use cases, state-charts, class diagrams, Sequence diagrams, activity diagrams or
other process models such as BPMN or Petri Nets, Task Models, and UI prototyping nota-
tions. During the second year, we change the development strategy and start on relying
on an agile methodology without flexibility to modify the notations. While the impro-
vement in the quality of models was perceived yet most of the students were not able
to fully understand them. Finally, during the third year, we kept the agile methodology
SCRUM, and let the teams modify or propose their own notation with really interesting
diagrams that at the end were easy to understand not just by the whole team presenting
the project but by the rest of their colleagues. Those diagrams even promote deep dis-
cussion about software and information architecture.

In this chapter, we extend the previous work [30] to explain in more details the proposed
methodology with the importance of empowering end-users in the process and let them
producing. The lesson learned on how they modify their attitude to create quality docu-
mentation and how happy they are nowadays by applying it at work.

2.	 State of the Art

Problems with current notations for the design of software has been reported for bu-
siness process modeling [6, 7], UML [1, 4 , 5, 11, 14, 17, and 21]. Most of these works agree
on the need to reconsider current graphical notations for the design of software or to
extend existing ones [19, 24, 25, and 26].

Adding visual aids to graphical notations for the design and modeling of software has
been reported in the literature. Some works propose the use of colors to reduce the
cognitive load while reading complex diagrams, for instance, UML [4] or graph transfor-
mations [19]. The use of colored aid proves to be beneficial, however, we have a limited

100 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

capacity not just to perceive colors (some people is color-blind), but also we can not
differentiate a high amount of colors, research has proved that we can deal just with 4
chunks of information at a time [22]. So the solution is limited to problem where with
limited variations.

Modifying the graphical notations is something that has been widely used in the litera-
ture. Trying to address limitations of current notations to represent agent-based systems
[23], hypermedia [24], security [25], workflow [26]. While adding variants to existing nota-
tions is useful, some people argue that by doing that, you might kill the original purpose
of the notations and overload the cognitive load to understand it [27]. Even worse you
are on the risk that the variant proposal to a notation might not be adopted by a com-
munity thus it might demand a lot of effort to keep updated, if we develop a software
or create a plug-in of an existing software, of new graphical notation. Using the right
notation for the right model [27], also represents a challenge when the notation does
not exist at all, for instance, how to design an auditory user interface? Or when the no-
tation lacks expressiveness, for instance, in UML labeling method and class names with
Italics to denote abstract Classes is not easy identified, sometimes, not even supported
in existing solutions.

Some communities work to address the problem of lack of agreement or expressiveness
in the notations. This is case of the Model-Driven Engineering community [28] that reach
some agreements on what concepts the notations must include but so far, no agreement
on the graphical notation exist. A similar effort was conducted for agent-based software
[15] but contrary to previous example, they now are at the stage of validating the cogni-
tive load of the i* graphical notation but no further effort has been reported.

3.	 The Research: On the Limitations of
Modeling in Software Engineering

Software Engineering is an activity that uses diagrams to interchange knowledge among
the different stakeholders that produce software. However, contrary to what you expect,
diagrams are normally relegated by the software development community, based on our
interviews, for different reasons: lack of time to create the diagrams, lack of knowledge
to create or read them, lack of interest as their utility seems to be not relevant [21]. This
perspective was collected from interviews with different stakeholders of the software
development industry and after some years of dealing with real-life projects and hand-
ling our own company. But contrary to what people might think the true is that there
is no way to keep alive a project without the right documentation. Let us introduce the
problem with the following scenario, from an interview: our subject told us: “we are mi-

101CHAPTER # 6 - A METHODOLOGY TO ASSIST NOVICE ENGINEERS TO PRODUCE QUALITY RESEARCH AND DEVELOPMENT PROJECTS

grating software made in C to Java but there is no documentation at all about how the
system was built even worse the code is vaguely commented, after two months of work
the company considered that doing from scratch the software would be the best solu-
tion, but surprisingly, one month after we start, the project was cancelled”. You might
think that perhaps we are referring to an unexperienced company but this is not the
case. We are talking about a transnational company with very high level standards in
software development and project management, such as CMMI, PMI certifications. So
what is the problem? Why are people not adopting good practices?

We collect data from interviews with information architects, project leaders, project ma-
nagers, Scrum masters, and Product owners, from national and international companies.
The common agreement was: “at the end there is no need to document things”, or “there
is no time to do that”, or “people is not aware of current software modeling standards
and they just use what it works for them”. Frequent and typical scenarios on the produc-
tion line (where programmers are) they preferred to read a code rather than a design
document to understand a project, nothing new, as pointed in [21].

So, we start tracking back the problem, to the University. Colleague students also do
not like to design and do diagrams of their projects. In every single contest when you
ask them about methodologies, models, design, and so on, they just simply reply: “we
are agile, no need to document”. From where they got this misconception of agile deve-
lopment? even worse, why the contest is not evaluating the quality of the product and
just simply relying on five minutes prove of concept? Perhaps, in a hackathon this is a
valid assumption due to the limited time they have to produce their projects, anyway
not doing that means that normally they do not adopt a software engineering strategy
before starting to code.

So we moved backward to the contest and start reviewing software engineering courses
content, exams, projects, and surprisingly, everything students need to produce quality
products based on software engineering methodologies was there. Unfortunately, few
students remembered how to use them correctly, when and how?

3.1	 Year One: Doing the Wrong Thing

At the university we have two courses, Research and Development I and II, in one course
students are expected to do the initial phase and the planning of a big project, while in
the second, the implementation, control and deployment. We have experimented with
two groups of 30 students each, forming teams of 6 students during the first year. Ori-
ginally, the role of the professor was planned to be a coach or mentor, as we expected

102 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

that senior students would have already all the skills and knowledge required to do
their work. As this was not the case, then some training was needed to guide them in the
analysis and design of their projects.

The first step was to define the problem. Techniques such as review of existing litera-
ture, participatory observation, interviews, activities diary, Market research, and FODA.
Then, they were asked to formalize their findings using PERSONAS for the user mo-
delling; requirements were specified with UML-use cases; and business process with
either UML-activity diagrams, Petri Nets with Yawl or BPMN. From the students, 80%
did not show any skill to do correctly the diagrams. The most common problems were
the following:

•• 90% of the students did not know the notations or the technique.

•• 95% of the students did not use naming conventions correctly for the use cases
and process. Instead of using a verb + subject, they just simply used a meaningless
subject.

•• 80% of the students did not use the complete notation, for instance, when mode-
lling use cases: insert, include and inheritance relationships were missing. Even that
during the review of this topic those relationships were mentioned to be important.

•• 75% of students did not model correctly the business process. Most of the problems
were related to the correct mapping of the actual process. Recursive tasks, parallel
and splitting sequences were missing in most of the diagrams.

We assume the lack of practice on the design and modelling activities were one of the
reasons why at the beginning students performed poorly. We use four iterations but re-
sults were just good with one out the six teams. Nevertheless, the rest of the teams had
acceptable models. Thus confirming our first hypothesis, that first poor results were due
to the missing experience modelling.

The second activity during the first course was planning. Techniques such as: COCOMO,
Delphi, Planning Poker, and Function Points were proposed to students. To understand
the complexity of their project they were asked to design: class diagrams, sequence
diagrams and state diagrams, the data-base E-R, and the overall architecture using MVC
abstractions. Similarly, as in the first phase, knowledge and experience on these topics
were missing. And particularly, the quality of these diagrams was worse. The most fre-
quent problems were:

103CHAPTER # 6 - A METHODOLOGY TO ASSIST NOVICE ENGINEERS TO PRODUCE QUALITY RESEARCH AND DEVELOPMENT PROJECTS

•• 100% had to learn a technique to estimate the size of their project.

•• 85% of the students did not use correctly name conventions for class diagrams.

•• 90% of the students did not use any pattern when modelling class diagrams. Simply
simplifications and mandatory methods such as CRUD were missing.

•• Just one student of the 60 knew how to write a MVC architecture for their project.

•• None of the students knew about patterns.

•• Sequence diagrams were the most complex topic and just one student did it right.

The final outcome from this course was non-functional prototypes, including the User
Interface design, see Figure 1 with some examples. The common issue with this activity
was that there was no standard graphical notation to present low-level UI prototypes.

The consequence of not having or adopting the same notation, or not using the notation
correctly was that during the presentation of their projects there were confusion, cons-
tant disagreement which was normal, and not the best atmosphere to foster a positive
interchange of perspectives among the different students.

During the second course the biggest problem was the assumption that waterfall
methodology could be applied, thus, we expect students to simply implement the design
proposed in the first course. Most of the problems were related to team organization, as
members of the team were not the same from course one and two. Working on the same
project was not a motivation for new team members. So, we discard those, new teams
(4) in our study for the second half of the year. So, from the remaining teams (8) the pro-
blem was related to project management and the impossibility to follow the established
plan. For different reasons but mostly:

•• There was limited experience programming big projects that require collaboration
of one or two members.

•• Some students did not accept to share their code thus they prefer to work alone on
the development and let their colleagues write the documentation.

•• The plan predicted that people would work on a regular basis but this was not the
case as students just shared a common space for 5 hours per week.

104 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

•• Social networks were just useful to set up a common space for interaction
but as communication was asynchronous most of the information was lost
in the timeline.

The assumption that students were more motivated and self-organized during
this course was just utopic. The truth is that they just simply fail as most teams
just never found a way to work together. The best two teams succeed just to deve-
lop 60% of the plan. The rest just finished between 40 to 50% of the plan. Impor-
tant characteristics, such as dashboards, that were planned were not developed.
In another scenario, two web applications were designed, one for academic pur-
poses and the second one was related to a health care electronic record system.
Both projects had problems to conduct a quality strategy in the development as
there were no technique to validate the quality is the product, i.e., the functio-
nality correspond to the plan and user expectations were fully covered. The pro-
blems to finish on time the project were:

•• Students were not familiarized to the user test, and conducting real qualita-
tive or quantitative evaluations of their projects. Thus, at least two weeks of
delay to learn about this topic.

•• Interaction with end users was considered in the plan. In all the cases, there
was a real beneficiary of the project, a school, an institution. So conduction
research with real end-users was possible. Consequently, we had to devote
some time to discuss with them.

•• Common changes. It was the case on every single project when they were
close to the end a lot of new requirements and changes emerged students
did not take well that situation and a generated a lot of stress.

The final result of one year of work was on the benefit for the future of these
courses. The lesson learned was on the benefit for the generation of students as
discussed in the next section.

3.2	 Year Two: on the Need for the Right Strategy

So the first thing we did was to reorganize both courses. Coaching was not an-
ymore the only teaching strategy, just for those groups of students with a cer-
tain degree of knowledge. Second, a diagnosis test was created to identify their
knowledge skills with regard to analysis and design of software, and product

105CHAPTER # 6 - A METHODOLOGY TO ASSIST NOVICE ENGINEERS TO PRODUCE QUALITY RESEARCH AND DEVELOPMENT PROJECTS

development. Third, course content was planned to regularized students to gua-
rantee common comprehension of the design and analysis of software. Fourth,
drop the waterfall methodology and rely on an agile strategy. Fifth, starting from
scratch a project was optional; students had access to the repository of existing
projects (8) to understand the ultimate goal of the course and letting them choo-
se any of those projects to expand them. Finally, reduce the discomfort of some
students to share their projects code by writing a document to register the author-
ship of the software.

During the adopting of the new strategy, we found new problems:

•• The quality of the diagrams did not improve anything compared to the pre-
vious year. The complexity of the notation, the lack of experience, and cog-
nitive load while modeling different elements using different notations was
reported to be a problem.

•• Planning was not done correctly, most of the teams, 6 out of 8, rely on COCO-
MO technique but applied wrong, the rest used function points but wrongly
as well.

•• Architecture and pattern-based models were still missing.

•• Evaluation of software was not part of the process again.

•• Every project start from scratch, nobody was interested in previous projects.
The consequence was that even for professors everything was new.

•• Progress on the projects still ranges around 40 to 60% of the plan.

•• Change in the methodology was not a good solution.

The last item was the most critics for the second year. Everybody wanted to agile but
nobody, including professors running project adopting an agile strategy. Students mi-
sunderstood most of the principles of agile paradigm; the most frequent problem was
related to documenting the design of their products. Everybody assumed that there
was no need to document anything. Also, when it came the moment to test the soft-
ware, students were reluctant to do that exhaustively as they assume that changing
the code in the future would be easy so why bothering the developers with deep test.
End users testing were let aside; nobody put much attention to end users. So, as a re-

106 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

sume, agile principles were not adopted so everybody obeys a free will strategy with
not so good consequences. Nevertheless, the final product was closer to a quality
product as all the previous misconceptions of an agile strategy were solved on time.
At the end there was just a common problem related to the quality of the diagrams
and the development, our challenge for the third year.

3.3	 Year Three: Empowering Students

The third year, a professor was sent to do some training in SCRUM, with an internatio-
nal expert with a lot of real-life projects. Thus we change everything and stop doing
a two-half project but a one-year project development adopting SCRUM as methodo-
logy, not just the principles but also the recommended techniques for each phase,
in next section we describe what so far have proven to be the best methodology to
develop research and development projects in the academic context. One of the most
important aspects was to empower students, given them the freedom to choose but
also guiding them to make decisions wisely. The most interesting aspect was related
to diagrams and notations, how they change them and how good they are while dis-
cussing during the presentation of their projects.

4.	 A Methodology to Develop Research and
Development Projects at University

These are the steps that after two years of work have probe to be the best techni-
ques and notations for the development of R&D projects. The methodology under
the current design process is analyzed and represented in accordance with ISO/IEC
24744 standard “Software Engineering Metamodel for Development Methodologies”
[29]. This forthcoming standard allows describing development methodologies in
terms of “Metamodel” and offers a standardized set of notations for the methodo-
logy formalization. Moreover, the main elements used for the formalization are des-
cribed in Figure 1. These elements are graphical items that identify in a clear way a
set of information like process steps, build tasks, task producers, techniques, tools,
relationships.

Figure 1. The graphical notation of the ISO/IEC 24744 standard, source [29].

107CHAPTER # 6 - A METHODOLOGY TO ASSIST NOVICE ENGINEERS TO PRODUCE QUALITY RESEARCH AND DEVELOPMENT PROJECTS

Figure 2. A methodology to develop R&D projects for novice engineers in Information
Technology at the University, using the notation of the ISO/IEC 24744 standard [29].

In this chapter we do not pretend to present in details the resulting methodology just
the current design process description, as it is shown in Figure 2. In Step 1, initiating.
Students are invited to do some research current national needs, in Mexico they include:
Education, health, security, human rights, or scientific development.

Figure 3. The process of gathering requirements

108 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Once they got inspired in the nature of the problem, vital step to adopt an agile
strategy, then they use the brain storming technique to decide what to do about
the problem. Once a decision was made they had to write a project charter. Next
Step is planning. The recommended techniques are related to project management
planning: FODA and market analysis. Then “Capture Requirements”, to analyze the
user needs (Customer requirements) and decompose them in a series of numbe-
red, single-item requirements that are formally agreed and prioritized. The acti-
vities enable to verify the reception and understanding of the final users’ needs
by the design team provide both that team and the final users with an agreed
list of technical high-level requirements that will be bound to the development
of the system. Selecting the right place where Participatory observation could be
conducted, then observe. Once you get basic understanding of the problem, then
writing the appropriate questionnaires to extend our comprehension and asking
the stakeholders of the product to gather as much information as they know about
how they currently do their work.

All these facts are relevant to create PERSONAS [31] and a Product Vision BOARD
of the project [32]. To ensure that the system covers the needs of the context re-
quire producing chips with stereotypes PERSONAS [31]. This technique captures
details HCI goals, desires, limitations, knowledge of end-users of an interactive
system.

In short, the process of defining PERSONAS is to create user profiles. In principle,
as a result of participant observation, interviews, and other activities listed abo-
ve, we proceed to identify user profiles system. A PERSONA is a description of a
group of users, typical of the system. Instead of talking about the group of users
of an abstract, impersonal way a person plays a ‘reference’ of a user group and
provides a means to talk and reason about this group through the characteristics
of a fictitious individual, we create a character. The name, photo does not corres-
pond to any actual person identified in our participant observation. The process
of creating PEOPLE begins with the creation of fact sheets actors interviewed or
observed, see Figure 4. Where each tab includes a type of information such as:
skills, abilities, needs, desires, work habits, tasks and experience. These sheets of
the observed actors should be categorized. Input, identifying actors and genera-
ting regions to group notes about them. For example, in a project for a school we
identify: parents, teachers, school administrative staff and students. Then, for each
observation groups to identify issues that could group each note. For example, for
the teacher, we could create a group of notes related to “Provide challenges” to
their students and this can be described in different ways.

109CHAPTER # 6 - A METHODOLOGY TO ASSIST NOVICE ENGINEERS TO PRODUCE QUALITY RESEARCH AND DEVELOPMENT PROJECTS

Figure 4. Peoples identified as a result of Participatory Observation

This method provides a significant constraint that has to do with the quality of the ob-
servations. That is, if we have lots of information as a result of the observations, which
is very good, it is very likely that we have for each actor much associated with each data
or even many groups of data information. Our proposal is to create a multidimensional
map for each actor, where each group of concepts occupy a dimension. Let’s review the
example of actor student, see Figure 4. As part at least four groups of information are
identified: learning skills, commitment, knowledge of IT, and availability of a PC at home.
For each group of information one-dimension vector is created, where we need to iden-
tify the ranges of allowable values for that dimension is generated. Take note that these
may vary between each set of information. Continuing the example in the context of
technology-mediated learning we are interested only skill-based learning: visual, audi-
tory, and kinesthetic. Then, learning skills can be grouped into three types, few (has only
one skill), medium (has two skills), many (have the three developed skills). Similarly, we
can categorize IT knowledge and commitment as short, medium, long. However, the ca-
tegory of availability of PC at home just requires analysis, with the following interpreta-
tion: little (no PC at home), medium (available PC at home but have to share use), much
(available PC at home for personal use).

110 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

We must take into account that the values used for sizing each group, little, medium,
high, are used illustratively as the names and their correspondences may be different,
and not necessarily uniform in quantity. For example, the IT skills could be classified
into four dimensions, not three, depending on the available information, as ignorant
(neither knows nor uses TI), basic (knows some necessary IT classroom) bigot (use and
is aware of new trends in IT and IT support used in the classroom), expert (IT deve-
lops solutions). The next step is to take up the sheets of our actors and classify each
worksheet precisely at some level of each dimension, points around each value in the
vectors of Figure 5.

Figure 5. Multidimensional space

Since a PERSONA is actually fiction, include the actual data describing the important
characteristics of a particular user group in a fictional character. So we need to ensu-
re including relevant information where at least two data points around each value
in the vectors of Figure 5. Derived from this process will emerge many proposals for
PERSONAS, for our example, we have at least four for each actor, which results in six-
teen actors, which is an excess of information. Since new research by Alan Baddeley
[33] and Nelson Cowan [34] found that the human being is able to process 4 bits of
information at a time [35]. And this is not only limited to the memory to the working
memory but also to the long-term memory. It has been shown that humans can deal
with information including category three things, if there are more things to remember
for the ability to remember category down to 80% and so on up to 20%. This cognitive

111CHAPTER # 6 - A METHODOLOGY TO ASSIST NOVICE ENGINEERS TO PRODUCE QUALITY RESEARCH AND DEVELOPMENT PROJECTS

limitation forces us to follow a selection process to reduce the 16 people to a number
between 3 and 4.

This selection can be done formally by using space selection of options proposed by
MacLean [36]. According to this method, a set of options (PERSONAS in our case) their
usefulness or feasibility can be evaluated when considering the options as a question
and the possible answers (priority criteria for our people) are evaluated. That is why
the first step is the definition of relevant criteria for our person. Consistency with the
project, easy to identify, a stereotype is intuitive: in this case to consider three criteria
were identified. The weight assigned to each criterion is based on the experience of the
designers of the people.

The significance of the links, figure 6, are solid darker line (++) means strong support,
continuous dark line (+) means the support, the dotted line (~) means a neutral re-
lationship, the dashed line (-) means little relationship, and the thick dashed line (-)
means no relationship. Of the four candidates Students denoted in Figure 6, we place
them as possible answers to the question “What is the best person for the stereotype
of student?”.

Figure 6. Selecting Options Design Space, source [36]

We use a letter to identify each student PERSONA, the same as we see in Figure 6. In
general, we can see, see Figure 6, which are all intuitive stereotype and generally all are
strongly consistent with the project. However, the variable that helps us determine who

112 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

opted has to do with the availability to identify these users. Note that this analysis only
provides an overview of the different properties related to the person and not reach a
conclusion about what is the best representation. It is simply an aid to select an option
among several in a structured way. This technique can serve for decision-making at all
stages of a project and even our life.

The motivation for the team is important and by doing this activity at least we guaran-
tee that the students’ team understand the need of the organization, the value that
doing the product would add to the stakeholders, thus never losing the motivation in
our students. Writing user histories instead of use cases is the next step. Then, writing
the Tests for each user history and adopt a test driven development strategy.

During the execution, an introduction to boundary test and equivalent partition te-
chniques was key at this stage. Students became aware on the need that any line of
code must have a corresponding test before it was implemented. Unit test was used
in each project during the third year, thus writing tests was a common activity for the
students, and thus, they were closer to a better quality product. Usability studies were
also recommended, by using formal studies such as the IBM Test suite. The advantage
of the initial stage and the connection with end-users since the beginning simplify the
evaluation process and reinforce the in the perspective of the students the need to
produce the expected product just as the final-users needed. Then again we had the
problem of doing a reverse engineering process on the running artifacts and writing
quality documentations with the findings reported in next section.

Finally, each sprint was controlled with its review. Inspect and adapt technique were
used as well to improve performance in next sprints. Iterations were made as long
as the time allows, final solutions we presented in a workshop where every team got
feedback from their colleagues. Each team is invited to present their work in less
than 20 minutes, focusing on technical challenges to foster discussion among their
colleagues.

5.	 Case Study: The Development of a Serious
Game to Teach Kids about Cancer

As an example of the resulting methodology, we briefly show a real life problem, just to
illustrate the kind of research our students do. They were asked to research on a public
health problem and how virtual reality could be used as a solution to any of those pro-
blems. The use of Virtual Reality was a constraint defined by the team, a serious game
to help kids and relatives to understand Cancer treatment. Being a growing problem in

113CHAPTER # 6 - A METHODOLOGY TO ASSIST NOVICE ENGINEERS TO PRODUCE QUALITY RESEARCH AND DEVELOPMENT PROJECTS

Mexico, Cancer normally affects patient´s perspective about their future, badly when you
are grown up, but this is not the case for a kid. Even kids with Cancer are not affected
by bad news but adults are normally reacting differently. So, our first goal of the serious
game was to help adults to understand the disease. The second, to help kids to unders-
tand the treatment, particularly chemotherapy as kids are more afraid of needle than
Cancer itself.

During the planning of the project, they started to work with an association from where
they did the requirements capture, using techniques such as participatory observation,
interviews, activities diary, video and audio recording, focus group. Decided to focus only
childhood cancer, they confirmed the problem and the fear that children feel towards
treatments, they know what they are going to do them or what will happen. Also, the fact
of not knowing what the disease itself, that causes stress in children every time they re-
ceive their treatment to the point that they leave many treatments, and the consequen-
ces are not just healthy but economical.

The challenge, how to create a solution and in which context the solution should work.
Children suffering from cancer have the following requirements:

•• Emotional needs that are common to all children, even when they are. It is including
the need to feel loved, to develop a sense of belonging, to feel self-respect, to get a
sense of accomplishment, security and self-knowledge, and be free of guilt.

•• Needs arising from the child’s reaction to the disease, hospitalization and treatment.
Fears and feelings of guilt or worthlessness require support, love, empathy, unders-
tanding, approval, friendship, safety, compassion and discipline.

•• Needs arising from the conception that the child is going to die, which generates
reactions of fear, anxiety, loneliness, sadness.

Pain is a mechanism that warns us of the existence of an injury or physical illness. In
patients with cancer pain, it is very common and disrupts their quality of life. Although
usually not fully relieved in some patients, most of them the pain can be controlled
effectively using non-pharmacological treatments. Highlights distracting techniques, the
use of imagination and training in relaxation / breathing, therapeutic elements conside-
red essential to relieve pain and reduce anxiety.

Distraction is a cognitive technique that involves drawing the attention of the source of
pain and directs it to other types of stimulation. With cancer patients it has been used

114 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

external distractions such as video games, toys, dolls or stories, and internal distractions
and emotional images. Distraction is involved in various psychological procedures or be-
cause the child is immersed in the fantasy, because it must cater to the rhythm of your
breathing or that focuses attention on an attractive activity.

The proposed solution is to design a serious game in which children receive their first
radiotherapy or chemotherapy, so when they can assimilate the advantages of the
treatment, and even consequences of not getting them. The game is divided into diffe-
rent interactive systems, one part consists of multimedia content describing the disease
to every person in the waiting room, and this is inspired in techniques to manipulate
crowds.

Then, the selection of the metaphor for the game, healthy human cells are presented
as maize. That is affected by Cancer cells, maize smut in our metaphor that expands as
fast as possible unless you got a cure. As a treatment, the game is divided into stages,
a main game in which the path to be followed in the treatment develops, and different
mini games related to this first. While the patient is receiving chemotherapy or radiation
therapy is to divert attention from what is really happening and also to cope with the
long periods in which it applies.

The support material is also an important part, whether with videos, animations, sto-
ries, or any material that may be of assistance will be beneficial with this information
is intended for patients of what the disease is, as develops, different types, the effects
it causes, as well as relevant to treatment. The use of metaphors will be vital since we
cannot treat the medical terms to explain to a young child, which is why we have been
raised using series of metaphors that help the patient to assimilate all the concepts
without losing sight of the real meaning, for this it had to choose between different ele-
ments found in our daily lives, and could quickly figure corn is one of the metaphors we
propose to introduce, as it is an element which we know from an early age, in addition
to being available for the entire population.

Since the human body can have harmful microorganisms, corn presents a series of visi-
ble fungi shown to infect. He thought of a corn, because in Mexico it is an element that
much of the population knows and is familiar, together that is a non-aggressive figure
which displays symbolically as an infection develops in a body easily, so that children
understand each part of the process.

Representing a healthy corn and other infected. In addition to the corn themed main
theme we propose a farm which represents steps (barns) that must be followed during

115CHAPTER # 6 - A METHODOLOGY TO ASSIST NOVICE ENGINEERS TO PRODUCE QUALITY RESEARCH AND DEVELOPMENT PROJECTS

the treatment, each game barn with a special informative content. Activities that were
raised were created from the goals that have medical procedures: The patient must take
medication, as well as the processes of radiation and chemotherapy, so he thought of
an activity in which the objective is to collect pills to improve the current condition of
the patient.

Figure 5. The farmer as metaphor of a doctor taking care of the sick corn
(kid with cancer)

Tests were conducted with children between 6-10 years of the center “A New Hope” for
treating children with cancer. Including those dedicated activities for each point of the
system they were tested. As a first impression sympathy of children was obtained by
knowing who would play instead of waiting. On a scale of 1 to 10 enthusiasm of 10 being
the highest number and children were categorized expected to average 8-9 evaluated by
psychologists from the center. When they were previously cataloged by an average of 6.8,
with an indifferent state or seriously did the children receive chemotherapy.

As for the activities children’s able to play properly after a brief explanation of how they
had to use, although a percentage of children showed some coordination problems, so
it is recommended to have certain levels in applications because it does not all children
have the same cognitive and motor capacity.

The results indicate that most of the surveyed users found the system useful, simple
and with a real purpose, which serves as a tool for treatment by traversing children. The
conclusion, these activities were a major influence on the behavior of children since im-
proved his mood. This gave us pause to think that there are some groups of people, of
which certain aspects have been neglected, in this case, child with cancer in our society.
Future work is more activities and generates a metric to know how effective the system
for them.

116 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

6.	 Discussion

During the three years, we conducted research around 30 research projects were develo-
ped, around ten per year. As mentioned before, we moved from a waterfall development
methodology and project management to an agile project development strategy. The last
prove to be the best one in terms of quality of the diagrams. At least, from our interviews
some of the reasons were the following:

•• Lack if time to rework on diagrams were assume correctly in previous steps. This
was primarily the case when adopting the waterfall methodology. Most of the stu-
dents used UML diagrams: activity, use cases, class, sequence and state-charts. It
was really stressing to students to re-do their work. So 100% of the diagrams did
not correspond to the final solution. Consequently, they were useless.

•• On the utility of the diagrams. This was the common claim. Working software rather
than exhaustive documentation. This common misunderstanding of agile strategies
was a problem during year three. However, we had more acceptable results. 100%
of the diagrams corresponded to the results of accepted in the previous Sprint.
This was clearly a huge improvement in the quality of the content of the diagrams.

•• On the correct use of the notation. Constantly iterating the review of the diagrams
improves the correct use of notations. Inexperienceddevelopers need constant fe-
edback and the final result was clearly better. In year one and two, they just did
UML diagrams. In year three, it was open the use of diagrams. The use of BPMN,
Task models and other notations was allowed, even colored UML. The correctness
of the diagrams dramatically improved. In year one the problem was not just about
the correlation but also about the correct use of notations. Common mistakes were
the use of the wrong diagrams for a specific model, most commonly a sequence
diagram to represent business process.

•• On the improvement/modification of existing notations. Giving freedom to stu-
dents to modify or improve existing notations showed to be reality useful to foster
discussion among them and to improve the quality and abstraction of the models.

Our work, found common problems already reported in the literature. Modify the No-
tation but Rely on existing guidelines. If any modification is going to be made, consider
the work of Jacques Bertin’s Semiology of Graphics [8]. Use the full capacity of visual
variables [5], see Figure 6. The choice of visual variables has a major impact on cognitive
effectiveness as it affects both speed and accuracy of interpretation [3,12, 20].

117CHAPTER # 6 - A METHODOLOGY TO ASSIST NOVICE ENGINEERS TO PRODUCE QUALITY RESEARCH AND DEVELOPMENT PROJECTS

Figure 6. Guidelines to develop a graphical notation. Source [8] in [5].

Sequence Diagrams are an important model that communicates the order of ejection
of the processes in a system. Diagrams considered really important and not producing
them with enough quality normally derives errors in the final product [1]. Adding visual
aids proved to be useful as shown in Figure 7. Visual CUES [9] indicating which elements
in a diagram are related to real objects.

Figure 7. Visual AIDS to improve comprehension of Diagrams, in this example in sequence
diagrams is improved with a graphical image depicting the object. Below color schema added

to the navigation map of the application.

Shapes are important to understand the difference of non-similar objects [3], even
that this research was conducted mainly for data graphs, their findings prove that

118 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

people tend to understand better when we use simple but different shape objects
and differentiate them with size. In UML classes are sized differently based on their
content but this do not mean anything about their complexity, yet students always
discuss about implementing the smallest class, just by simply relying on their visual
perception.

Ask Students. As pointed in different context. Sometimes when it is not clear the no-
tation you can ask students to propose their own. As reported in [5]. In our case, we
asked our students to produce their own diagrams, even UI prototypes widgets.

7.	 Conclusion

In this chapter we present a serious of findings based on three years of research while
teaching novice software engineers, senior students of the university, how to produce a
quality product. While the whole study focused in the whole process, we wanted to make
emphasis in this chapter on the complexity and poor quality of the documentation. Our
findings confirm what it is written in the literature, several are the causes why diagrams
are not easy encoded or understood. Our research proved that by allowing some stra-
tegies recommended in the literature, mostly by empowering students in selecting the
guideline that fits better to their needs produce better documentation. Still, there is a
need to keep working on this topic and still is an open issue, as we cannot imagine a
scenario where each time we work on a project we could promote the adoption of a mo-
dified notation, thus losing the benefits of adopting a standard. Perhaps, in the future
we would join efforts towards an easier to understand notation.

8.	 Acknowledgements

To students of the computer science faculty of the Meritorious Autonomous University of
Puebla that were part of this research.

9.	 References

[1] 	 Bolloju, N., & Leung, F. S. (2006). Assisting novice analysts in developing quality con-
ceptual models with UML. Communications of the ACM, 49(7), 108-112.

[2] 	 Davis, C. J., & Hevner, A. R. (2015). Neurophysiological Analysis of Visual Syntax in Design.
In Information Systems and Neuroscience (pp. 99-105). Springer International Publishing.

[3] 	 Cleveland, W.S., McGill, R.: Graphical perception: theory, experimentation, and appli-
cation to the development of graphical methods. J. Am. Stat. Assoc. 79(387), 531–554
(1984).

119CHAPTER # 6 - A METHODOLOGY TO ASSIST NOVICE ENGINEERS TO PRODUCE QUALITY RESEARCH AND DEVELOPMENT PROJECTS

[4] 	 Coad, P., Luca, J. D., & Lefebvre, E. (1999). Java Modeling Color with Uml: Enterprise
Components and Process with Cdrom. Prentice Hall PTR.

[5] 	 El Kouhen, A., Gherbi, A., Dumoulin, C., & Khendek, F. (2015). On the Semantic Trans-
parency of Visual Notations: Experiments with UML. In SDL 2015: Model-Driven Engi-
neering for Smart Cities (pp. 122-137). Springer International Publishing.

[6] 	 Figl, K., Mendling, J., & Strembeck, M. (2013). The influence of notational deficiencies
on process model comprehension. Journal of the Association for Information Sys-
tems, 14(6), 312.

[7] 	 Genon, N., Heymans, P., & Amyot, D. (2010). Analyzing the cognitive effectiveness
of the BPMN 2.0 visual notation. In Software Language Engineering (pp. 377-396).
Springer Berlin Heidelberg.

[8] 	 Jacques, B.: Semiology of Graphics: Diagrams, Networks, Maps. University of Wiscon-
sin Press, Madison, Wisconsin (1983).

[9] 	 Kim, J., Hahn, J., & Hahn, H. (2000). How do we understand a system with (so) many
diagrams? Cognitive integration processes in diagrammatic reasoning. Information
Systems Research, 11(3), 284-303.

[10] 	Koschke, R. (2003). Software visualization in software maintenance, reverse engi-
neering, and re-engineering: a research survey. Journal of Software Maintenance
and Evolution: Research and Practice, 15(2), 87-109.

[11] 	 Kutar, M., Britton, C., & Barker, T. (2002). A comparison of empirical study and cog-
nitive dimensions’ analysis in the evaluation of UML diagrams. In Procs of the 14th
Workshop of the Psychology of Programming Interest Group (PPIG 14).

[12] 	 Lohse, G.L.: A cognitive model for understanding graphical perception. Human-
Computer Interaction 8(4), 353–388 (1993)

[14] 	 Moody, D., & van Hillegersberg, J. (2008). Evaluating the visual syntax of UML: An
analysis of the cognitive effectiveness of the UML family of diagrams. In Software
Language Engineering (pp. 16-34). Springer Berlin Heidelberg.

[15] 	 Moody, D. L., Heymans, P., & Matulevicius, R. (2009, August). Improving the effecti-
veness of visual representations in requirements engineering: An evaluation of i*
visual syntax. In Requirements Engineering Conference, 2009. RE’09. 17th IEEE Inter-
national (pp. 171-180).

[16] 	 Moody, D. L. (2009). The “physics” of notations: toward a scientific basis for cons-
tructing visual notations in software engineering. Software Engineering, IEEE Tran-
sactions on, 35(6), 756-779.

[17] 	 Siau, K., & Loo, P. P. (2006). Identifying difficulties in learning UML. Information Sys-
tems Management, 23(3), 43-51.

[18] 	 Rosa, M. L., Ter Hofstede, A. H., Wohed, P., Reijers, H. A., Mendling, J., & Van der Aalst,
W. M. (2011). Managing process model complexity via concrete syntax modifications.
Industrial Informatics, IEEE Transactions on, 7(2), 255-265.

120 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

[19] 	 Stanciulescu, A., Vanderdonckt, J., & Mens, T. (2008, May). Colored graph transforma-
tion rules for model-driven engineering of multi-target systems. In Proceedings of
the third international workshop on Graph and model transformations (pp. 37-44).
ACM.

[20] 	Winn, W.: An account of how readers search for information in diagrams. Contemp.
Educ. Psychol. 18(2), 162–185 (1993).

[21] 	 Scanniello, G., Gravino, C., Genero, M., Cruz-Lemus, J. A., & Tortora, G. (2014). On the
impact of UML analysis models on source-code comprehensibility and modifiabili-
ty. ACM Transactions on Software Engineering and Methodology (TOSEM), 23(2), 13.

[22] 	 Cowan, Nelson. 2001. “The magical number 4 in short-term memory: A reconsidera-
tion of mental storage capacity.” Behavioral and Brain Sciences 24: 87–185.

[23] 	Odell, J., Parunak, H. V. D., & Bauer, B. (2000). Extending UML for agents. Ann Arbor,
1001, 48103.

[24] 	Baumeister, H., Koch, N., & Mandel, L. (1999). Towards a UML extension for hyper-
media design. In «UML»’99—The Unified Modeling Language (pp. 614-629). Springer
Berlin Heidelberg.

[25] 	Rodríguez, A., Fernández-Medina, E., & Piattini, M. (2007). A BPMN extension for the
modeling of security requirements in business processes. IEICE transactions on in-
formation and systems, 90(4), 745-752.

[26] 	Van der Aalst, W. M. (1993). Interval timed coloured Petri nets and their analysis (pp.
453-472). Springer Berlin Heidelberg.

[27] 	 Guerrero-García, J. (2014). Evolutionary design of user interfaces for workflow infor-
mation systems. Science of Computer Programming, 86, 89-102.

[28] 	Fonseca, J. M. C., Calleros, J. M. G., Meixner, G., Paterno, F., Pullmann, J., Raggett, D., ... &
Vanderdonckt, J. (2010). Model-based ui xg final report. W3C Incubator Group Report,
May, 32.

[29] 	 ISO/IEC: 24744: Software Engineering - Metamodel for Development Methodologies.
International Organization for Standardization/International Electrotechnical Com-
mission, Geneva, 2007.

[30] 	Guerrero-Garcia, J., Gonzalez-Calleros, J., Muñoz-Arteaga, J., Morales, A., & Monarca, I.
(2016, April). Getting Research Findings into Practice: Guidelines to Produce Quality
Software Engineering Diagrams to Assist Novice Engineers. In 2016 4th International
Conference in Software Engineering Research and Innovation (CONISOFT) (pp. 149-
158). IEEE.

[31] 	 Pruitt, J., Adlin, T., The Persona Lifecycle: Keeping People in Mind Throughout Pro-
duct Design. Morgan Kaufmann, 2006.

[32] 	Pichler R. (2016). Strategize: Product Strategy and Product Roadmap Practices for
the Digital Age. Pichler Consulting, 1 edition.

121CHAPTER # 6 - A METHODOLOGY TO ASSIST NOVICE ENGINEERS TO PRODUCE QUALITY RESEARCH AND DEVELOPMENT PROJECTS

[33] 	Baddeley, Alan D. 1994. “The magical number seven: Still magic after all these
years?” Psychological Review 101: 353–6.

[34] 	Cowan, Nelson. 2001. “The magical number 4 in short-term memory: A reconsidera-
tion of mental storage capacity.” Behavioral and Brain Sciences 24: 87–185.

[35] 	Veenma, M., P. Wilhelm: The relation between intellectual and meta-cognitive skills
from a developmental perspective, 14, 89-109 Learning and Instruction, 2004.

[36] 	MacLean, A., Young, R.M., Bellotti, V., Moran, T.P., Questions, Options, and Criteria: Ele-
ments of Design Space Analysis, Human-Computer Interaction, Vol. 6, No. 3-4, 1991,
pp. 201–250.

122

Chapter # 7
Improving Privacy Notices
Usability Applying Cognitive
Ergonomics in Interaction
Patterns

Enrique Sánchez Lara
Universidad Popular
Autónoma del Estado
de Puebla
Puebla, Puebla 72410,
México
enrique.sanchez@
upaep.mx

Sandra R. Murillo
Universidad Popular
Autónoma del Estado
de Puebla
Puebla, Puebla 72410,
México
sandrarocio.murillo@
upaep.mx

J. Alfredo Sánchez
Universidad de las
Américas Puebla
Cholula, Puebla 72810,
México
alfredo.sanchez@
udlap.mx

1.	 Introduction

Internet services, cloud computing, network applications and social networks have
changed the way people interact and work today. In many cases, personal informa-
tion is requested in order to access them and the end user is not aware about where
that information will be stored, how it is or not protected and when and how it could
be used again with or without his explicit consent. From the perspective of personal
data protection, owners of data have the right and freedom to decide what to com-
municate, when and to whom, maintaining control over their personal information at
all times. Due to problems that have arisen (identity theft, fraud, etc.), international
organizations have proposed mechanisms for software developers that include op-
tions that strengthen user privacy. This paper investigates what tools developers use
to produce privacy software and propose an interaction pattern in order to enhan-
ce user experience with the elements of a privacy notice.The paper is organized as
follows: Section II discusses the main information privacy and cognitive ergonomics
issues. The general and specific objectives are defined in Section III. Section IV des-
cribes the current situation as regards privacy policies. Legacy tools versus interac-
tion patterns are presented in Section V. Finally, Section VI presents the conclusions
of this study.

123CHAPTER # 7 - IMPROVING PRIVACY NOTICES USABILITY APPLYING COGNITIVE ERGONOMICS IN INTERACTION PATTERNS

2.	 Privacy information and cognitive
ergonomics

Protecting information began in the world focused in protecting national security
and government information, for example the Administrative Procedure Act of the
United States in 1946 and the Privacy Act in 1974. As time have passed and technolo-
gy have evolved, new kind of laws have been necessary, including the protection of
people’s information and privacy [1]. Since 1967 in Europe with Resolution 509, in the
70’s in France, Germany and other countries, later on with the promulgation of Con-
vention number 108 to protect people against automated data processing the world
began to focus in people’s right to privacy. In 1995, Directive number 95/46/CE of the
European Council chapters 7-8 discusses the differences between the governments
of the European Community about the protection of personal privacy and proposes
that there should be a common base of user privacy protection rights eliminating
existing disparities.

These provisions established users’ right to access their information and modify it
when inaccurate, their right to cancel data when it is no longer relevant or has be-
come obsolete, and their right to oppose their use by a third party. Several projects
have been implemented in order to achieve or enhance computer user privacy and
computer user privacy notices [2] [3] [4] [5] [6]; for example, in the United States the
P3P protocol was promoted by Microsoft in an attempt that Web pages would create
an internal structure that assured some degree of user privacy [2]. However, expe-
riences in Latin American environments have not been considered in those develo-
pments and proposals.

In Mexico, the Federal Law on Protection of Personal Data Held by Private Parties
(LFPDPPP) [7] was adopted in 2010. According to Article 16 of this law, protecting per-
sonal data is a fundamental right. Any institution or enterprise requesting personal
information should create and publish a Privacy Notice, a document that explains
some or all of the ways the institution or enterprise gathers, uses, discloses and
manages a client’s data. This privacy notice should specify the enforcement, rectifi-
cation, cancellation and opposition of access rights. Any company or institution must
consult owners as to whether they authorize the transfer of their information to third
parties. The institution must notify owners about any changes made in the Privacy
Notice and request for consent to use new data. The Privacy Notice should be made
available through physical, digital, visual, audio or any other media. All individuals
or their legal representatives may exercise any of these rights, without cost. The
LFPDPPP specifies three possible modes of the Privacy Notice as follows [7]:

124 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Full Privacy Notice (Indispensable)

1.	 Identity and address of the person or entity responsible of gathering per-
sonal data.

2.	 Purpose of the personal data processing
3.	 Options for limiting the use and disclosure of personal data
4.	 Options to exercise ARCO rights
5.	 Procedure for communicating changes in the Privacy Notice to the owner

of personal data.
6.	 Where appropriate, data transfers that are made
7.	 Whether they are managing sensitive personal data

Simplified Privacy Notice

1.	 Identity and address of the person or entity responsible of gathering per-
sonal data

2.	 Purpose of the personal data processing
3.	 Mechanisms to find the full Privacy Notice

Short Privacy Notice

1.	 Identity and address of the person or entity responsible of gathering per-
sonal data

2.	 Purpose of data processing, with no need to identify secondary purposes
3.	 Mechanisms by which owners may find the full Privacy Notice

There are several guidelines, interaction patterns [8], tools [9] [10] [11] and research
projects [12] that have proposed and evaluated [13] mechanisms to generate a privacy
notice. This facilitates the task of creating it, fulfilling the requirements indicated by
law. However, the information generated does not produce a useful document for end
users, neither enhances the user experience or cognitive ergonomics of the computer
interface, delegating responsibility to the default options suggested by the interface
[14].

Because current privacy notices are not standard, end users can´t apply the expe-
rience gained consulting one when consulting a new one. Legal terminology and the
poor level of information security culture produces uncertainty, bothersome, and a
bad end user experience and some degree of mental fatigue because of the low level
of cognitive ergonomics in the computer interface. Due to this situation, it is not easy

125CHAPTER # 7 - IMPROVING PRIVACY NOTICES USABILITY APPLYING COGNITIVE ERGONOMICS IN INTERACTION PATTERNS

to recognize and exercise end user rights in this area even when the website they
have accessed provides technical mechanisms for doing so [14]. None of the existing
papers or projects proposes a detailed plan to represent, create and deploy user
friendly privacy notices.

According to the International Ergonomics Association [15], “Ergonomics (or human
factors) is the scientific discipline concerned with the understanding of interactions
among humans and other elements of a system, and the profession that applies
theory, principles, data and methods to design in order to optimize human well-being
and overall system performance”. So, in this broad definition humans can perform
better in an ergonomic environment. In the Human Computer Interaction arena, a
more specific definition is necessary: Cognitive Ergonomics, that is defined in [15]
as: “a discipline concerned with mental processes, such as perception, memory, re-
asoning, and motor response, as they affect interactions among humans and other
elements of a system. (Relevant topics include mental workload, decision-making,
skilled performance, human-computer interaction, human reliability, work stress and
training as these may relate to human-system design.). In order to provide an ergono-
mic design to the interaction patterns of this work, as well as a very simple and easy
to understand classification of the attributes of the privacy notice, the theories of [16]
[17] were applied. In [16] the concepts of visual thinking states that the human brain
is capable of processing in a natural and parallel way the following items:

•• What
•• Who
•• How many
•• Where
•• When
•• How

The reason of such six element´s parallel processing capability seems to be the need
for surviving. Humans developed such parallel processing because, in a threatening
environment it is necessary to know: What or Who is the enemy of threat, how many,
where the enemy is, when the danger is present and how to deal with all of these
elements and take a decision. In Phantoms in the Brain [17], the neurobiological fun-
daments of such parallel processing are studied and discussed. For example, it is
described that the human senses have separate areas in the brain to do their specific
job, and everyone has a separate working memory area, allowing people to work in
parallel in order to make almost instant decisions.

126 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

So, the specific attributes of the privacy notice and the particular elements of the
end user interface were framed inside these global items (What-Who, How many,
Where, When, How) in order to produce the final interaction pattern which is ex-
pected to cause less mental fatigue and avoid the end user mental workload li-
mit [17]. The correlations between the particular end user interface elements were
measured with a parametric analysis using frequencies. The results are described
in Section V.

3.	 Objective

The goal of this research is to evaluate the use of interaction patterns with cognitive
ergonomics elements in building.

3.1	 Specific objectives

1.	 To identify the current structure of the privacy notice on Internet pages.
2.	 To identify human factors interacting with privacy notices.
3.	 To propose a mechanism that allows developers to build effective manage-

ment of user privacy applications.

3.2	 Methodology

A quantitative analysis of data was performed to examine the current situation as to
online privacy notices in Mexico. It investigates whether they:

»» Have the elements required by law.
»» If users perceive a user-friendly format.
»» Measures the time invested in identifying its elements.
»» Documents user satisfaction related to this interaction with the computer

interface.

Online privacy notices and paper-based questionnaires were used to collect data.
Subsequently, the performance of a group of developers who used legacy tools to
build interacting privacy policy applications was documented and compared to de-
termine whether they had an interaction pattern set in place from the beginning of
the project. This research was performed with the participation of Information Tech-
nology students in a private university in the city of Puebla, Mexico. Their participa-
tion was voluntary and compensation was not offered.

127CHAPTER # 7 - IMPROVING PRIVACY NOTICES USABILITY APPLYING COGNITIVE ERGONOMICS IN INTERACTION PATTERNS

4.	 The current situation as to privacy
policies

The average time users dedicated to identify privacy notice elements is documented, as
well as human factors as regards interaction with them.

4.1	 Elements of privacy policy

An experiment was conducted in order to record the time spent to identify elements of
the privacy notice.

4.1.1	 Procedure to determine current situation

During the Fall term of 2012, two ninth-semester Computer and Systems Engineering
students from a university in the city of Puebla, Mexico, consulted fifteen randomly se-
lected Mexican websites in the months of November and December of that year. In the
first session, the role of a privacy notice and its components were explained to them.
They worked one hour daily with a five-minute break between the readings of each of
the fifteen privacy notices of the corresponding fifteen web pages.

Each inquiry of the experiment was made ​​directly via computer and participants were
asked to find each element of the privacy notice and report it as existing in a predefined
electronic format. They were allowed to make additional notes on paper. The time spent
by each participant is shown in Table 1.

4.1.2	 Results

»» In Table 1 we show that the average time needed to read a privacy notice was
10.3 minutes; a college level of reading and understanding was assumed.

»» In Table 2 we illustrate that no single privacy notice showed all the elements
required by law in the fifteen corresponding web pages.

»» Table 2 shows that required items –Identity and Address of the person or en-
tity responsible of gathering personal data, Purpose of data processing and
Options to exercise ARCO rights– were found in 86.7% of the total sample.

»» Table 2 shows that the mandatory element Method and options by which chan-
ges are reported about the Privacy Notice was found in 80% of the total sample.

»» Finally, Table 2 shows that options for limiting the use and disclosure of per-
sonal data were found in seven out of the fifteen privacy notices in the co-
rresponding web pages.

128 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Table 1. Time used to identify the essential elements in each privacy notice.

Studied Site .MX Domain Person A (min.) Person B (min.)
Telmex.com 21 17
Esmas.com 30 20
Seccionamarilla.com 20 17
Tvazteca.com 9 7
Telcel.com 11 10
Iusacell.com 10 7
Unefon.com 7 5
Mecagable.com 8 10
Hospitalpuebla.com 7 6
Sanatorio.com 5 5
Hospitalbetania.com 12 8
Beneficienciaespanola.com 10 7
Upaep 5 4
Itesm 8 7
Cemexmexico.com 9 7

Table 2. Presence of elements in privacy notices

Privacy policy element % of Presence in
privacy notices

Identity and address of the person or entity responsible for gathering
personal data 86.7%

Data processing purpose 86.7%

Options for limiting the use and disclosure of personal data 46.7%

Options to exercise ARCO rights 86.7%

Where applicable, personal data transfers that are made by the entity ​​73.3%

Means by which changes in the privacy notice are reported to the owner of
personal data 80%

Where applicable, whether sensitive personal data is handled 33.3%

4.2	 Human factors

A statistical study based on frequency analysis [18] was performed based on the pre-
vious experience of participants, using the third version of a paper-based questionnaire
to document human factors related to reading a privacy notice.

129CHAPTER # 7 - IMPROVING PRIVACY NOTICES USABILITY APPLYING COGNITIVE ERGONOMICS IN INTERACTION PATTERNS

4.2.1	 Methodology

A quantitative data analysis was performed, based on a parametric analysis using fre-
quencies. A questionnaire was applied to 36 eighth and ninth- semester Information
Technology students. There were 24 men and 12 women. Participants were asked to rate
five statements (listed and labeled from “a” to “e” in the next paragraphs) based on the
following Likert scale:

•• Strongly Disagree
•• Disagree
•• Neither Agree or Disagree
•• Agree
•• Strongly Agree

Study question: “In relation to Privacy Notices on the Internet and the privacy of my
data: ____”

•• It is very easy to identify the elements of a privacy notice
•• Reading a privacy notice is enjoyable
•• I perceive that the websites are concerned about helping me to manage my privacy.

The general format of a privacy notice is similar in all pages I visit
•• I think that any internet user can understand the contents of a privacy notice

4.2.2	 Results

•• In Table 3 to 6 we present no participants indicated “agree” or “strongly agree” with
respect to the ease of identifying the elements of a privacy notice, the enjoyable
nature of the task, the concern websites have about privacy, or the similarity of
notice formats.

•• In Table 3 and Table 4 we show 66.7% strongly disagree with the statements that
it is very easy to identify the elements of a privacy notice and that reading of the
privacy notice is enjoyable..

•• In Table 5 we exhibit 33.3% strongly disagree with the statement that websites help
manage end user privacy.

•• In Table 6 we show 50% strongly disagree and 36.1% disagree with the consistency
of privacy notice formats across all the web pages they visit.

•• In Table 7 we exhibit with respect to whether they consider that any Internet user
can understand the contents of a privacy notice: 16.7% strongly disagree, 50% disa-
gree, 13.9% neither agree nor disagree, 16.7% agree and 2.8% strongly agree.

130 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

4.3	 Discussion

This study was conducted with volunteer eighth- and ninth-semester Information Tech-
nology students who were not offered any rewards for their time. An advanced reading
level was assumed. For future studies, it is recommended that other profiles be included
and that the sample is larger. In some of the following tables Likert values (4 = Agree , 5
= Strongly Agree) were not included because the frequency was 0 all the times, so the
percentage is 0.

Table 3. It is very easy to identify the elements of a privacy notice

Likert value Frequency Percentage
1 24 66.7
2 9 25.0
3 3 8.3

Total 36 100.0

Table 4. Reading a privacy notice is enjoyable

Likert value Frequency Percentage
1 24 66.7
2 7 19.4
3 5 13.9

Total 36 100.0

Table 5. Perceive that the websites are concerned with helping manage privacy

Likert value Frequency Percentage
1 12 33.3
2 8 22.2
3 16 44.4

Total 36 100.0

Table 6. The general format of a privacy notice is consistent across all pages

Likert value Frequency Percentage
1 18 50.0
2 13 36.1
3 5 13.9

Total 36 100.0

131CHAPTER # 7 - IMPROVING PRIVACY NOTICES USABILITY APPLYING COGNITIVE ERGONOMICS IN INTERACTION PATTERNS

Table 7. Any internet user can understand the contents of a privacy notice

Likert value Frequency Percentage
1 6 16.7
2 18 50.0
3 5 13.9
4 6 16.7
5 1 2.8

Total 36 100.0

In order to protect personal data of end users, the presence of a privacy notice is re-
quired; however, these notices do not have a homogeneous structure as we can see
in Table 6, nor do they include patterns, icons or universal formats to help end users
understand their basic elements. Reading them generates boredom, uncertainty and/
or indifference and this is a concern, because information security culture is at risk. In
Table 7 we exhibit participants believe that most people do not understand the con-
tents of a privacy notice. If this happens to people in higher education, it is essential
to investigate what happens in other sectors of the population.

As shown in Table 1, it takes too long to read the average privacy notice, considering
that this step is mandatory in order to access a web page that collects personal data.
In Table 3, Table 4 and Table 5 showsfor most users that it is not an enjoyable activity
and they perceived that there were no mechanisms to help them manage their privacy.

If there were a standard format for presenting information, it could be easier to create
privacy notices and users could identify each element in a simple and timely manner.
Users are required to learn computer security terms that are not defined in common
language and may have different meanings when used by developers, causing con-
fusion. Based on these results, two suggestions can be made. First, the relationship
between user interface and privacy human factors should be studied in order to pro-
pose schemes that enhance the browsing experience. In addition, an analysis should
be made to determine whether privacy notice developers have the necessary tools at
their disposal to facilitate this task.

5.	 Legacy vs Interaction Patterns Tools

In this part of the project, the performance of developers in building an end-user
privacy application using legacy tools versus using interaction patterns is compared
[8] [19].

132 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

5.1	 Specific objectives

•• To identify tools used by developers to build applications related to end-user pri-
vacy functions.

•• To evaluate the usefulness for developers of the tools mentioned above.
•• To evaluate the relevance of a set of interaction patterns related to end user priva-

cy for the construction of computer interfaces.

5.2	 Methodology

The functional requirements of five applications involving end-user information priva-
cy were defined. During Fall 2012 a study of a course group of eleven seventh-semester
Computer Engineering and Software Engineering students was conducted in order to
identify the software elements used to build privacy applications. The students were
allowed to select the tools they considered appropriate for their design and implemen-
tation. After completing the course and evaluating the functionality of their applications,
students were provided with a set of interaction patterns (COPEMMA [19] and the Privacy
Notice which will be described in Section V.1) and each team was asked to estimate their
impact on the finished work, if they had received such patterns at the beginning of the
course.

Students participated under the premise that only compliance with the requested
functional requirements would be assessed. Development teams did not have the help
of legal experts, graphic designers, or similar professionals. Functional requirements
were presented to each team without mentioning the purpose of this study. Each team
selected its software development methodology, programming language, icons, images
and organization of information on the screen. To obtain their concluding remarks, they
were invited to participate voluntarily without any remuneration.

5.3	 Study projects

There were five projects involved in this study. These projects were presented at the ex-
hibition of final projects organized by the Information Technology Department to which
the students belong. In all five cases, evaluators and other students who participated in
the project commented that these tools made ​​it easier to understand privacy policies.
The projects are as follows:

•• In Figure 1 we show the navigation prototype for a Privacy Notice on a mobile device
based on Android.

133CHAPTER # 7 - IMPROVING PRIVACY NOTICES USABILITY APPLYING COGNITIVE ERGONOMICS IN INTERACTION PATTERNS

•• In Figure 2 we show how web graphics display elements of a Privacy Notice for co-
llege students.

•• In Figure 3 we show a simplified Android Privacy Notice based on learning styles.
•• In Figure 4 we present Augmented Reality applied to display elements of privacy.
•• In Figure 5 we exhibit a Display privacy policies based on P3P (Platform for Privacy

Preferences) for the Chrome browser.

Figure 1. Prototype Navigation

Figure 2. Graphics display elements

5.3.1	 Tools Used

In the three partial evaluation sessions of the functional requirements for each applica-
tion, developers were asked openly about all tools, guidelines and standards used as the
basis of building each project. A summary follows as we show in Table 8.

134 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Figure 3. Displaying a Simplified Privacy Notice

Figure 4. Augmented Reality

Figure 5. Display based on P3P

135CHAPTER # 7 - IMPROVING PRIVACY NOTICES USABILITY APPLYING COGNITIVE ERGONOMICS IN INTERACTION PATTERNS

Table 8. Programming Tools, Guides And Standards

Job Tools Methodology Information security standards

1 Eclipse Modeling Scrum Protection of personal data Law, collections of icons,
password entry fields.

2 PHP and
Eclipse

Modeling
object-oriented

Summaries of Protection of personal data Law, Privacy Bird,
data encryption function, password entry fields.

3 Eclipse Object-oriented
modeling Protection of personal data Law, icons, password entry fields.

4 Java Object-oriented
modeling Protection of personal data Law, APIs development.

5 PHP Object-oriented
modeling

Privacy-Bird-P3P * , XACML***
http://www.w3.org/P3P/
**http://sunxacml.sourceforge.net/

5.3.2	 Interaction Pattern: Privacy Policy

For this project, the following interaction pattern was designed based on the results ​​in
Section IV.2 and previously published work: [19, 14].

Name
Full privacy notice
Problem
The Privacy Notice is a document generated by the individual or entity responsible for the
proper compiling and processing of personal data and should be made ​​available to the owner
of the data. This document does not have a defined structure and each party decides on the
format. The document is written in legal language, unclear to the end user, and it is difficult to
identify its parts. It is commonly ignored by users because of its length.

Solution
A hierarchy of data distribution and navigation information based on usability rules is
proposed. The user is shown the procedure to identify the elements of a privacy notice and the
function of each one.

Context
According to Article 16 of the FPDPPP (Federal Law on Protection of Personal Data Held by
Private Parties) in Mexico, comprehensive format is required to explicitly include the following:

Handling of personal data collected by the responsible
Individuals responsible for gathering personal data
How to exercise ARCO rights by the owner of personal data
How changes in the Privacy Notice will be announced to personal data owner
How to limit the use of personal data
Consent for the transfer of personal data
Revoking consent for processing captured personal data
Revoking consent for the transfer of data to third parties
Explicit information about vulnerable groups

This interaction pattern continues on the following page ––––––>

136 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Use of Cookies and additional data collection technologies
Display of consequences of possible misuse of data
Tips to prevent misconduct of the personal data

Usability
Helps users to identify the elements of a Privacy Notice.

Consequences
Users can identify the parts of a Privacy Notice, recognize its importance and exercise their
ARCO rights in a timely manner.

Related patterns
Personal information
Sensitive personal data
Exercise ARCO rights

Example
In Figure 6 we show an example.

Figure 6. Privacy Policy Example

5.4	 Utility tools

5.4.1	 AssessmentTools

At the last review session participants were asked to evaluate the tools they used based
on the following Likert scale:

•• 1 - Strongly Disagree
•• 2 - Disagree

137CHAPTER # 7 - IMPROVING PRIVACY NOTICES USABILITY APPLYING COGNITIVE ERGONOMICS IN INTERACTION PATTERNS

•• 3 - Neither agree nor disagree
•• 4 - Agree
•• 5 - Strongly Agree

Research question: “Tools, guidelines and standards that you used in your project signi-
ficantly facilitated the following tasks.” We exhibit results in Table 9.

Table 9. Three tasks with likert results

Job Programming a
privacy app

Designing privacy
GUIs

Consulting privacy
icon

 1 3 2 3
2 3 2 3
3 4 3 4
4 3 3 3
5 2 2 3

Average 3 2.4 3.2
Utility tool for developers 3/5 = 60% 2.4/5 = 48% 3.2/5 = 64%

Participants were also asked to respond to the following “Question 1” and “Question 2”
as a team:

Is there a universal language that represents computer security issues and end user
privacy?

•• Is the participation of graphic designers pertinent for building these interfaces?
•• In Table 10 we show answers.

Table 10. Additional elements

Job Question 1 Question 2
1 Isolated elements Yes
2 No Yes
3 No Yes
4 No Yes
5 No Yes

5.4.2	 Impact of Interaction Patterns

During the Summer term of 2013, students who developed Applications 1, 2, 3 and 4
(Described in Section V.C “Study Projects”) studied the concept of interaction patterns,

138 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

unknown to the students at that time. They were introduced COPPEMA[14] and Privacy
Policy pattern (Seen in Section V.1) were presented. They were asked to estimate how the
projects would have been influenced had they been given to them at the beginning of
their projects, based on the following Likert scale:

•• Strongly disagree
•• Disagree
•• Neither agree nor disagree
•• Agree
•• Strongly Agree

Study question: “Has a collection of Privacy interaction patterns significantly facilitated
the tasks associated with the application development presented in the Fall term of
2012?”. In Table 11 we exhibit the results:

Table 11. Tasks and associated rating

Job Programming a
privacy app

Designing privacy
GUIs

Consulting privacy
icon

1 4 5 4
2 4 5 5
3 4 5 4
4 4 4 4

Average 4 4.75 4.5
Utility tool for developers 4/5 = 80% 4.75/5 = 95% 4.5/5 = 90%

Finally, they were asked to estimate the average hours they would have saved if they
had been given the interaction patterns at the beginning of their projects. In Table 12 we
show the answers.

In Table 13 we present a comparison between the use of legacy development tools they
freely choose and interaction patterns follows.

5.4.3	 E. Results of the Second Part

Neither team used tools to build prototypes, nor was any comprehensive collection of
specialized items identified as having helped them in their design and development.
Supporting elements (Java classes, extensions for particular types of browsers) were
found to support any type of application, as seen in Table 8. In Table 9 we exhibit the
tools used are considered, in general, 60% useful in designing a privacy application,
compared to 80% for interaction patterns as we show in Table 11.

139CHAPTER # 7 - IMPROVING PRIVACY NOTICES USABILITY APPLYING COGNITIVE ERGONOMICS IN INTERACTION PATTERNS

Table 12. Estimated impact of interaction patterns on application design

Job Average real hours invested Average estimated hours with
interaction patterns

1 20 15
2 10 7
3 12 7
4 28 23

Total hours 70 hours 52 hours

Table 13. Interaction patterns versus legacy tools

Programming a
privacy app

Designing privacy
GUIs

Consulting privacy
icon

General development tools 60% 48% 64%
Interaction patterns 80% 95% 90%

In Table 10 the existence of a universal language in the area of security information is
not recognized and the participation of a graphic designer is considered pertinent in
these projects. In Table 12 we exhibit an average reduction of 25.7% of the total develop-
ment time for applications is expected if interaction patterns are made available at the
beginning of the project.

Traditional design tools are useful for creating IT security applications. However, having
a collection of interaction patterns makes it easier for software developers, as we can
show in Table 13.

6.	 Discussion

Future studies could include graduates of these majors that are involved in the soft-
ware industry and graphic design students who have experience in software deve-
lopment teams. In Table 9 we exhibit developer satisfaction as regards the use of
traditional security tools for graphic interfaces design is very low. This fact opens up
opportunities to suggest models that support these projects. Due to the increasing
number of Internet users, it is necessary to build more security software applications.
Measuring the impact of applying cognitive ergonomics as a global framework in the
design of interaction patterns is a broad line of research. In this work the specific end
user interface elements (human factors) were measured according to how they impro-
ve the performance of the developer. Future work could measure end user satisfaction
of the interaction pattern, specifically items such as mental workload compared to

140 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

mental fatigue, the time to complete the whole privacy notice recognition with
and without the cognitive ergonomics elements.

 In Table 8 we exhibit Legacy development tools support the building of effective
applications; however, having a collection of interaction patterns facilitates the
tasks involved in privacy design. In Table 12 and Table 13 we show these patterns
are presented as good practices in the software development cycle and reduce
the time spent. The fact that there is no universal language of security informa-
tion opens up the playing field to new ideas that will enhance collaboration bet-
ween experts and multidisciplinary teams as we can see in Table 10.

Building up a collection of interaction patterns that includes these results can
influence issues of usability and user experience, to build tools to support pri-
vacy management. In this work the interaction pattern was designed with the
visual thinking cognitive ergonomics but it was not explained to the developers.
Many applications are developed only by security experts, and this means that
they fulfill functional requirements, but are far from solving real problems for
users.

7.	 Conclusion

Current interaction with the elements of a privacy policy does not facilitate the
exercise of ARCO rights, making Internet users browse in insecure mode, at the
expense of any possible misuse of personal information.

The goal of presenting users with data handling policies is met from a technical
and legal framework, but the ultimate goal, which is to protect people and facili-
tate the exercise of ARCO rights, is not satisfied. Registered user experience as to
privacy policies is not positive. Items that facilitate the design and construction
of interfaces involving privacy issues for end users are scarce. To implement this
kind of applications, developers can apply any methodology and software deve-
lopment tools, depending on needs and available resources; however, once they
have a set of specific interaction patterns, the issues involved are reduced.

The study suggests that future work should propose collections of interaction
patterns that include examples based on how people learn and interact with
human-computer interfaces. This would improve the information security culture
of Internet users, reduce risks and mitigate associated problems such as mental
fatigue, boredom and exceeding mental workload limit.

141CHAPTER # 7 - IMPROVING PRIVACY NOTICES USABILITY APPLYING COGNITIVE ERGONOMICS IN INTERACTION PATTERNS

8.	 References

[1] 	 L. Rebollo, «Vida privada y protección de datos. Un acercamiento a la regulación in-
ternacional europea y española,» [En línea]. Available: http://biblio.juridicas.unam.
mx/libros/6/2758/10.pdf. [Último acceso: 2014].

[2] 	 L. Cranor, M. Langheinrich y M. Marchiori, «W3C The Platform for Privacy Preferences
1.0 (P3P1.0) Specification,» 2002. [En línea]. Available: http://www.w3.org/TR/P3P/.
[Último acceso: 2013].

[3] 	 J. King, A. Lampine y A. Smolen, «Privacy: Is there an app for that? Symposium
On Usable Privacy and Security,» [En línea]. Available: http://dl.acm.org/citation.
cfm?id=2078843. [Último acceso: 2013].

[4] 	 S. Garfinkel y L. Faith, Security and Usability. Designing Secure Systems That People
Can Use., O´Reilly , 2005.

[5] 	 P. Gage, L. Cesca, J. Bresee y L. Faith, «Standardizing Privacy Notices: An Online Study
of the Nutrition Label Approach,» [En línea]. Available: http://www.cylab.cmu.edu/
files/pdfs/tech_reports/CMUCyLab09014.pdf.

[6] 	 H. Lindskog, Web Site Privacy with P3P, Wiley, 2003.
[7] 	 C. d. d. d. H. C. d. l. Unión, «Ley federal de protección de datos personales en pose-

sión de los particulares,» 2010. [En línea]. Available: http://www.diputados.gob.mx/
LeyesBiblio/pdf/LFPDPPP.pdf. [Último acceso: 2013].

[8] 	 J. Borchers, A pattern approach to interaction design, England: Wiley, 2001.
[9] 	 I. F. d. A. a. l. I. y. P. d. Datos, «Guía práctica para generar el aviso de privacidad,» [En

línea]. Available: http://inicio.ifai.org.mx/DocumentosdeInteres/privacidadguia.pdf.
[10] 	C. Fácil, «Generador de avisos de privacidad,» [En línea]. Available: https://

www.contratosfacil.com/document/51015f 1c6df58/Generador-automtico
-de-tu-Aviso-de-Privacidad-personalizdo-en-minutos.

[11] 	 P. Life, «HCI Patterns Collection - Version 2,» [En línea]. Available: http://primelife.
ercim.eu/images/stories/deliverables/d4.1.3-hci_pattern_collection_v2-public.pdf.
[Último acceso: 2013].

[12] 	 P. Gage Kelley, L. Cesca y L. Faith, «http://repository.cmu.edu/cylab/1/,» Standardi-
zing Privacy Notices: An Online Study of the Nutrition Label Approach.

[13] 	 C. Jensen y C. Potts, «Privacy policies as decision-making tools,» SIGCHI conference
on Human Factors in Computing Systems, pp. 471-478, 2004.

[14] 	 S. R. Murillo y J. A. Sánchez, «Studying the Relationships between the Management
of Personal Data Privacy and User Interface,» Human Computer Interaction. Lecture
Notes in Computer Science Volume 8278, pp. 79-89, 2013.

[15] 	 IEA, «International Ergonomics Association,» 1 January 2016. [En línea]. Available:
http://www.iea.cc/about/index.html. [Último acceso: 20 June 2016].

[16] 	 D. Roam, La clave es la servilleta, Bogotá: Norma, 2009.

142 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

[17] 	 V. Ramachandran, Phantoms in the brain, New York: Harper Perennial, 1999.
[18] 	N. K. Malhortra, Investigación de Mercados., Pearson Prentice Hall. 5ª. Edición., 2008.
[19] 	 S. R. Murillo y J. A. Sánchez, «Patrones de interacción y su aplicación a la privacidad

en Internet,» de INCOSE, Puebla, 2013.

143

Chapter # 8
Analysis methodology for

quality source code in software
development

Carlos-Alberto Lóopez-López, Carolina-Rocío Sánchez-Pérez, Alberto Portilla y
Marva-Angelica Mora-Lumbreras
Universidad Autónoma de Tlaxcala (UATx)
Facultad de Ciencias Básicas, Ingeniería y Tecnología
Calzada Apizaquito S/N, Apizaco, Tlaxcala
Emails: carlos.alberto.lopez@outlook.com, fkrlinasp, alberto.portilla, marva.morag@gmail.com

1.	 Introduction

Small and Medium Mexican Enterprises dedicated to software development have great
competition in the market, the Ministry of Economy reports that Mexico currently has 755
certified centers under quality models such as the Capability Maturity Model Integration-
CMMI, the NMX-059/01NYCE-2005 also known as Moprosoft, Team Software Process Per-
formance and Capability Evaluation (PACE) TSPPACE [1]. Also in the framework of the sec-
torial agenda for the development of Information Technologies, federal government has
defined as a strategy stimulating the IT market, linking the demand of economic sectors
with the supply of products and quality IT services in Mexico [3]. This scenario implies that
companies must ensure the quality of their products and processes to score a differen-
tiator in the IT market to be highly competitive. To achieve this most adopted methodolo-
gies and models aimed at improving the quality of processes in the organization. Howe-
ver, this is not enough, as several of these models focus on obtaining documentation
process which doesn’t does not necessarily guarantee a quality product. The Moprosoft
and CMMI models implement verification and validation practices for the processes do-
cuments of the area of Software Development and Maintenance. On the other side, Agile
methodologies define practices such as peer review to the source code that focuses on
issues such as format, indented, declaration of variables, etc., but not specifically define
quantitative metrics to assess the quality of the source code. The quality of the source
code is related to non-functional characteristics of the software, such as performance,
maintainability, stability, security, to name a few, however many times to review the sour-

144 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

ce code we found that this presents some shortcomings such as repeated code, complex
or not commented, which have an impact on non-functional characteristics even it meets
the functionality requested by the customer.

The main purpose of software engineering is the fulfillment of user requirements and
building quality software methodologically, the IEEE defines quality as the degree to
which a system, component or process meets the requirements specified, or the degree
to which a system, component or process meets the needs or expectations of the user
[2]. Meanwhile, in quality models and process improvement methodologies emphasis on
compliance with the process, and measurement it is done by adjusting the concept of
quality process quality, yet the process of measuring source code quality focuses mostly
on the contents of the documents produced by peer reviewers and not necessarily in a
quantitative methodology where metric values must meet indicated values to be consi-
dered software quality.

This research focuses on the analysis of metrics to evaluate the quality of object-oriented
source code and propose a set of thresholds to apply for quantitative indicators of the
quality of the source code, this will allow to define a Methodology for source code analysis.
The rest of the article is organized as follows, Section II presents related work, Section III
introduces the software metrics, in Section IV we analyze software metrics object-oriented,
Section V presents a comparison of thresholds, Section VI presents the Analysis Methodo-
logy and finally Section VII concludes the chapter and presents future work.

2.	 Related Work

In [4] metrics are proposed to measure the process, product and people (P3) in the
generic stages of a development cycle: requirements, design and implementation. The
intention is to highlight the value of measuring the complete development of a soft-
ware product to ensure quality. For the requirements phase are explained metrics that
focuses in on use cases to count the number of workers covered by a scenario require-
ments and quality metrics requirements that will allow measure no-ambiguity and that
the cases are correct and complete. Examples of these metrics are a number of actors,
messages and classes associated with the use case. For the design phase metric define
both quantitative and qualitative, quantitative focus on the number of design elements,
such as packages, classes, interfaces, methods, etc. Qualitative metrics to measure the
quality of each design element such as: Instability, Abstraction, investment principle of
dependency, dependency and acyclic Principle and Principle encapsulation principle.
For the last phase of implementation developers coding requirements based on the
design, metrics that are used at this stage to assess that the code is testable testeable,

145CHAPTER # 8 - ANALYSIS METHODOLOGY FOR QUALITY SOURCE CODE IN SOFTWARE DEVELOPMENT

have the necessary comments, which is maintainable and portable. Examples of these
metrics are the scope of methods, ramifications and symbols. While an important set of
metrics defined in this chapter, it is concluded that the quality process must be specific
to the organization providing a basis for product quality, research in this area is in con-
tinuous progress providing better metrics for the product, people and process, so as to
support the development team.

On the other hand, there are different models and quality metrics that support the de-
velopment of a software product, which allows the final product quality. In [5] the need
for quality metrics from different views it is studied. It seeks to examine why software
metrics are required and revisit their contribution to the quality and reliability of soft-
ware. The authors propose a classification process metrics, project metrics and product
metrics. Process Metrics are oriented to development process development, covering as-
pects such as the duration of the process, the cost involved and the type of methodology
used. Meanwhile, project metrics are focused on monitoring the status of a project, so
that, they can minimize the risks associated with this. Finally, product metrics focuses on
the attributes of the software product in the development phase. The metrics conside-
red in this work are: program size, complexity of software design, performance, portabi-
lity, maintainability, coinciding with measuring aspects that define Poornima and Suma
work. In [5] presents a comparison of the strengths and weaknesses of software metrics,
based on the idea that the industry has no standards and measurement practices. The
strengths and weaknesses of the physical and logical lines of code, function points, as
well as object-oriented metrics are highlighted, this review will allow a discrimination of
those considered for our analysis.

Finally, in the object-oriented paradigm, they are still using metrics that were created
for a procedural approach paradigm. However, have emerged different sets of metrics to
measure the characteristics of object-oriented systems, it is necessary to identify which
of these sets of metrics are those that provide a better measure of product quality. In
[6] intends to evaluate three different sets of metrics for objectorientedobject-oriented
paradigm:

•• Metrics for Object Oriented Design MOOD
•• Shyam R. Chidamber and Chris F. Kemerer
•• Lorenz and Kidd

As a result of the comparison of these three groups, metrics authors recommend the use
of the first two group of metrics, which can measure the object-oriented features, such
as encapsulation, inheritance and polymorphism.

146 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

3.	 Software Metrics

There is a set of software metrics for object-oriented paradigm, in this section the me-
trics used in this research are defined. These metrics are those that after an analysis
seem better suited for the type of projects and methodologies that we use for software
development projects.

3.1	 Cyclomatic complexity

Cyclomatic complexity measures the logical complexity of a program software. This me-
tric gives great added value, since it is possible to use during software development
when maintenance is necessary, to identify the tests and reengineering needed.

3.2	 Size code

This metric was one of the first to emerge, as a quick way to measure a program. Many
metrics use it as the basis for their measurements. There are different measurements
that will be made to the source code, below are some:

•• Total number of lines.
•• Number of lines of code (not counting line spaces and comments).
•• Number of methods.
•• Number of sentences.
•• Number of lines of comments.

3.3	 Documented code

A good practice when coding a program is to add enough information to explain what
the code does. To ensure that the code contains the necessary documentation must add
comments to the class, methods, global variables, loops, conditions and code fragments
where the intention is not evident.

3.4	 Weighted Methods per Class (WMC)

The WMC metric [11] is the sum of the complexities of all methods of a class. It is an in-
dicator of the effort required to develop or maintain a particular class.

	

Where a class Ci has methods M1, ...Mn, with their respective complexity, C1, ..., Cn.

147CHAPTER # 8 - ANALYSIS METHODOLOGY FOR QUALITY SOURCE CODE IN SOFTWARE DEVELOPMENT

3.5	 Response for Class (RFC)

The RFC metric [11] is the number of different methods and constructors invoked when
a method of a class runs.

	 RFC = |RS|

Where RS is the set for response for class.

	 RS = {M}[{Ri}

	 i

Where {Ri} is the set of methods called by method i; and {M} is the set of all methods
in class.

3.6	 Lack of Cohesion of Methods (LCOM)

The LCOM metric [11] is responsible for measuring the lack of cohesion of a class. Cohe-
sion measures the degree of specialization of a particular class. Classes with a high de-
gree of cohesion are easier to maintain, and as their purpose is more specific and tends
to be more reusable. Consider a class C1 with n methods M1, M2, ..., Mn. Be {Ij} = the set
of variables instances by the method Mi.

There are sets n such that {I1}, ...{In}; Be P = {(Ii, Ij) | Ii ∩ Ij = ∅}, and Q = {(Ii, Ij) | Ii ∩ Ij
∅}. If all sets n {I1}, ...{In} are ∅, so P = ∅.

3.7	 Coupling Between Objects (CBO)

The CBO metric [11] is responsible for measure is coupled few classes a class, a class is
coupled to another when you call methods of a class or use its attributes.

3.8	 Depth of Inheritance Tree (DIT)

The DIT metric [11] is aimed at identifying the level at which is a class in the inheritance
hierarchy. A class that is at a very low level of the hierarchy is more difficult to identify its
operation, having to know the function of the classes in on a higher level.

148 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

3.9	 Number of Children (NOC)

The NOC metric [11] measures the number of classes are is inheriting a specific class.
This information is useful when you want to change a class, measures the impact of
knowing the number of classes that inherit from it.

3.10	 Duplicated code

When coding a program usually falls in a very bad practice, to copy blocks of code. When
copying the code there are the following disadvantages:

Increases code size, a larger code size complicates maintenance.

•• When changes are necessary, must change all the duplicate code, and if for some
reason any section is not updated on which a copy was made, the portion of code
can be inconsistent and cause the system to malfunction.

•• The copy code reflects the lack or deficiency in the design of software.
•• For these reasons it is advisable to avoid duplicated code in a software program.

Table 1. Metric’s comparison

Metric
Works related

[7] [4] [5] [6]
Cyclomatic complexity YES YES
Size code YES YES
Documented code YES
Weighted Methods per Class YES YES YES
Response for Class YES YES YES
Lack of Cohesion of Methods YES YES YES
Coupling Between Objects YES YES YES
Depth of Inheritance Tree YES YES YES
Number of Children YES YES YES
Symbol Coverage Metric YES
Method Coverage Metric YES
Branch Coverage Metrics YES
Method Hiding Factor YES
Attribute Hiding Factor YES
Metric Inheritance Factor YES
Attribute Inheritance Factor YES
Polymorphism Factor YES

This table continues on the following page ––––––>

149CHAPTER # 8 - ANALYSIS METHODOLOGY FOR QUALITY SOURCE CODE IN SOFTWARE DEVELOPMENT

Metric
Works related

[7] [4] [5] [6]
Coupling Factor YES
Class Size Metrics YES
Class Inheritance Metrics YES
Class Internals Metrics YES

4.	 Metrics Analysis

In this section present a comparative analysis of the metrics defined in the previous sec-
tion. The Table 1 shows a comparison of selected metrics associated with the work where
they were implemented. The first nine metrics are the most mentioned and implemen-
ted, which is an indicative of the importance to measure the quality of object-oriented
source code. To get a broader picture of the advantages and disadvantages of these
metrics, for each metric an analysis is performed to define the values or thresholds re-
commended in this work.

4.1	 Cyclomatic complexity

When measuring a program an important step is to have reference parameters to identi-
fy the portions of code where the reduction of complexity must be made. Table 2 shows
the ranges that a program must meet, based on its complexity, this will serve as a basis
for measuring the quality of the source code.

4.2	 Weighted Methods per Class

A class with a high WMC indicates that the class is complex, so it is difficult to reuse and
maintain. This metric uses the cyclomatic complexity to calculate the complexity of each
method. Rosenberg [9] defines that the upper limit to this metric is 100, lower values will
be acceptable. Based on this threshold, each method has a complexity maximum of 10;
that is a simple program and applying the rule of thirty in code size, the following thres-
holds are proposed in Table 3.

Table 2. Ranges program complexity [8]

Cyclomatic Complexity Risk Evaluation
1-10 a simple program, without much risk
11-20 more complex, moderate risk
21-50 complex, high risk program
mas de 50´ untestable program (very high risk)

150 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Table 3. Weighted methods per class ranges

Weighted Methods per Class Method Evaluation

1-100 1-10 Desirable

101-200 11-20 Acceptable

201-300 21-30 Not recommended

Table 4. Response for class ranges

Response for Class Evaluation

1-50 Desirable

51-100 Acceptable

more than 100 Not recommended

Table 5. Coupling between objects ranges

Coupling Between Objects Evaluation

0-5 Desirable

6-7 Acceptable

mas de 7´ Not recommended

4.3	 Response for Class

RFC value of a class should not exceed 50, although it is acceptable to have values of 100
as a limit. The Table IV shows these ranges.

4.4	 Lack of Cohesion of Methods

This metric has a well- known threshold, LCOM4 must be equal to one in a well-designed
class. When a class has values greater than one, it has to be refactored to have more
specific tasks.

4.5	 Coupling between Objects

Is the number of classes to which a given class is coupled? Rosenberg [9] defines
a threshold of 5. Taking this threshold as reference to the thresholds presented in
Table 5.

151CHAPTER # 8 - ANALYSIS METHODOLOGY FOR QUALITY SOURCE CODE IN SOFTWARE DEVELOPMENT

Table 5. Initial values metrics

Class

Lin
es

of
tc

od
e

Me
th

od

Co
m

en
tL

in
es

We
igh

te
dM

et
ho

ds
pe

rC
la

ss

Re
sp

on
se

fo
rC

la
ss

Du
pl

ica
te

dc
od

e

RegistroUsuario 295 11 1 55 49 67

CambiarContrasenia 94 3 0 10 21 33

CancelarCuenta 84 3 0 10 20 33

Authenticator 128 3 3 7 19 0

GestorArchivosBussines 221 9 0 34 52 43

InicioSesionBussines 182 5 16 64 132 0

RegistroUsuarioBussines 559 21 10 71 108 74

CambiarContraseniaBussines 51 2 0 8 12 16

CancelarCuentaBussines 42 2 0 6 11 16

Utilidades 193 14 8 65 57 0

Total 1849 73 38 330 481 282

4.6	 Size code

This metric is easy to obtain and gives an initial overview of the current state of a soft-
ware program. There are several controversies regarding the importance of code size,
some authors propose to focus on other metrics and others recommend paying special
attention.

Stefan and Martin [10] proposed the Rule of 30, which states:

a.	 Methods should not have more than an average of 30code lines (not counting
line spaces and comments).

b.	 A class should contain an average of less than 30methods, resulting in up to
900 lines of code.

152 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

c.	 A package should not contain more than 30 classes, comprising up to 27,000
code lines.

d.	 Subsystems with more than 30 packages should be avoided. Such a
subsystem would count up to 900 classes with up to 810,000 lines of
code.

e.	 A system with 30 subsystems would thus possess 27,000 classes and 24.3
million code lines.

f.	 If the system is divided into 3 to 10 layers, each layer comprises 3 to 10
subsystems.

g.	 This rule serves as a benchmark, because there will be cases where it can
not be applied.

4.7	 Documented code

With regard to the thresholds for the amount of code documentation there are few
recommendations; in order to have a benchmark we propose to take the number of
methods that contains the class to define the number of comments lines, the com-
ments of a method comprised of two-three lines. The following formulas are presented
to define thresholds for code documentation.

	 LCCI = (M +1) * 2

	 LCCS = (M +1) * 3

Where LCCI is the lower limit of lines of code comments and M the number of
methods of classes plus class comment. LCCS is the upper limit of lines of code
comments.

5.	 Thresholds Assessment in a Study Case

Having identified the key metrics to measure and their thresholds, we proceeded to
evaluate this values in a case study. In order to compare the thresholds of the metrics
discussed in the previous section the measurement of a software system was made,
the system used allows registration of requests for procedures. The SonarQube tool
was used for measurement.

153CHAPTER # 8 - ANALYSIS METHODOLOGY FOR QUALITY SOURCE CODE IN SOFTWARE DEVELOPMENT

The system case study is composed of 157 classes in the Java language, divided into
10 modules. The Tables 6 and 7 show baseline measurement of ten classes that make
up the registration module, specific user account with SonarQube. The effort invested
in measuring and refactoring of this module was 40 hours of a developer, this time
dedicated to improving the source code will be a benefit as necessary to maintain the
module.

Table 6. Unique values metrics

Metric Value
Lack of Cohesion of Methods 1
Number of Children 0
Depth of Inheritance Tree 1

As we can see, the first metric to be improved is the documentation of the code, sin-
ce only the 30% of source code is documented, when the recommendation is to have
100% of classes commented.

With regard to the cyclomatic complexity all classes are within the desirable threshold
limit, that is 100. The metric for a class response has acceptable values except for a
class that throws a very high value and is recommended to decrease this value to less
than the 100 desired range.

This module has a 15% duplicated code, which is recommended to decrease or
eliminate.

The Table VII shows metrics that yielded the same value in all classes. The lack of co-
hesion metric methods is complying with the rule that must be equal to one and the
other two metrics show very low values, which is an indication that they are not taking
advantage of the properties of inheritance.

Once the measurement and identification of possible improvements, we proceeded
to the modification of the source code to improve quality and add new features. The
RegistroUsuarioBussines.java class was refactored resulting in the MovimientoFami-
liaBusiness.java and EnvioCorreoBusiness.java classes to get a better specialization in
classes, thereby reducing the cyclomatic complexity in these classes. In order to re-
duce duplicate code, was found that the class CancelarCuentaBussines.java and Cam-
biarContraseniaBussines.java were unified classes and were doing similar tasks, which
resulted in the ModificacionUsuarioBusiness.java class that implements the similar
class.

154 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Table 8. Improved metric values

Class

Lin
es

of
tc

od
e

Me
th

od

Co
m

en
tL

in
es

We
igh

te
dM

et
ho

ds
pe

rC
la

ss

Re
sp

on
se

fo
rC

la
ss

Du
pl

ica
te

dc
od

e

RegistroUsuario 317 16 37 59 51 0
CambiarContrasenia 116 5 7 11 26 39
CancelarCuenta 99 4 6 10 24 39
Authenticator 155 5 3 6 15 0
GestorArchivosBussines 269 9 0 34 49 51
InicioSesionBussines 224 5 34 17 128 33
RegistroUsuarioBussines 336 9 30 40 61 27
MovimientoFamiliaBusiness 232 6 23 22 52 133
EnvioCorreoBusiness 212 6 23 18 35 0
ModificacionUsuarioBusiness 182 5 17 18 31 28
Utilidades 138 13 41 33 45 0
Total 2280 83 221 268 517 350

Values with improvements to the code and analyzing metrics are shown in Table 8, it
should be noted that some metrics increased by new features that were added to the
system.

As you can see code documentation improved is close to 90% and can raise more, still
there is a missing class to document.

Another metric that improved is the cyclomatic complexity when performing refactoring
process and there is the possibility of reducing their values in a class.

Response for a class and duplicated code metrics did not improve, and its increase was
proportional to the code that was added by new functionalities. It is advisable to do fur-
ther analysis on this code, maybe adding generic methods to handle classes and avoid
duplicate code.

The Metrics defined in Table VII maintained the same values in all classes analyzed mo-
dule. It can be seen that by making the specialization and refactorizacion refactoring

155CHAPTER # 8 - ANALYSIS METHODOLOGY FOR QUALITY SOURCE CODE IN SOFTWARE DEVELOPMENT

sections based on thresholds analyzed served to enhance their values in most classes
code.

6.	 Analysis Methodology

Measuring the source along with the comparison of thresholds give an overview of the
usefulness of having metrics and thresholds, which are the basis for the definition of
the measurement methodology source. In this section, we give the steps to follow in the
methodology to guarantee the source code quality.

6.1	 A. Define the scope of measurement

The first step is applying this methodology to a software project, there must be establis-
hed if the entire system will be evaluated or only apply to a part of this. To make this
decision we have to take into account the time and the number of developers required
to improve the source code.

6.2	 Measure the source code

Once defined the scope of improvement proceeds to measurements to obtain source
code metrics values set by the methodology.

•• Size code
•• Documented code
•• Weighted Methods per Class
•• Response for Class
•• Lack of Cohesion of Methods
•• Coupling Between Objects
•• Depth of Inheritance Tree
•• Number of Children
•• Duplicated code

6.3	 Threshold comparison and identification of
improvements

Values obtained against each metric thresholds are compared. Classes that have values
that are not patched ranges will be candidates to improve according to the metric that
do not comply.

156 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

6.4	 Source code Improvement

Size code: When the limit is exceeded the only solution is to refactor the class
along with the identification of duplicate code unifying in a new class.

Cyclomatic complexity: To reduce the complexity of a method, one can make use
of utilities that perform tasks that are repetitive and separating tasks in new
methods.

Documented code: For this metric the solution is obvious we must add the neces-
sary comments presented in Section 4.

Duplicated code: You have to identify duplicate code blocks and make a unification
on these blocks in a single method.

There will be cases where the project cannot meet the thresholds and where one
must justify why the thresholds are not in recommended ranges. Given that the
thresholds are not law; they are only a framework.

7.	 Implementation

7.1	 Case study

The Institutional Information Management System (Sistema Institucional de In-
formacion Administrativa SIIA) of´ the Autonomous University of Tlaxcala encom-
passes a large number of processes at the same university, for example, Student
Services, Human Resources, Financial Resources, Heritage, Libraries, Tutoring, to
name a few.

SIIA is composed of 2.211 java classes contained in packages 280, with a total of
323,126 lines of code.

7.2	 Implementation methodology plan

It is intended to implement the methodology to the entire SIIA, in order to have a
source code of quality and maintainable, once achieved this aim migrate this sys-
tem to a newer platform with modern technologies which are responsive to mobile
devices such as smartphones and tables tablets.

157CHAPTER # 8 - ANALYSIS METHODOLOGY FOR QUALITY SOURCE CODE IN SOFTWARE DEVELOPMENT

7.3	 Implementation of the methodology

Define the scope of measurement: The implementation will gradually start with School
Services module, which is composed of the following sub-modules:

•• Student Administration
•• Change of status of students
•• Ratings
•• Course record
•• Credentialing
•• Official documents
•• Registrations of students
•• Educative offer
•• Plans and programs of study

Measure the source code: In Table 9 and 10 the measurement values are presented.

Threshold comparison and identification of improvements: Values that exceed the thres-
holds of the metrics are shown in Table 11.

Table 9. Metric values

Class

Lin
es

 o
f c

od
e

Me
th

od
s

Co
m

m
en

t l
in

es

We
igh

te
d

Me
th

od
s p

er
 C

la
ss

Re
sp

on
se

 fo
r c

la
ss

Du
pl

ica
te

d
co

de

AdminBajasActionBean 152 11 0 26 74 0
AdminBajasEJBBean 364 20 1 50 103 42
CapCalificacionesBean 546 10 6 58 142 406
AutorizarCargaBean 238 11 0 38 52 66
AutorizarCargaEJBBean 284 11 0 23 32 0
RealizarCargaBean 782 14 0 134 104 117
AdminSolCredBean 390 12 35 36 99 17
ImpCredActionBean 691 19 94 79 108 34
ValCredActionBean 152 9 0 26 43 38

This table continues on the following page ––––––>

158 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Class

Lin
es

 o
f c

od
e

Me
th

od
s

Co
m

m
en

t l
in

es

We
igh

te
d

Me
th

od
s p

er
 C

la
ss

Re
sp

on
se

 fo
r c

la
ss

Du
pl

ica
te

d
co

de

CargaMasCredBean 176 10 0 24 51 52
AdminSolCredEJBBean 1674 39 235 143 71 106
ValCredEJBBean 262 12 5 38 60 17
CargaMasCredEJBBean 194 8 16 36 44 20
ImpDocOfiBean 2215 27 7 366 236 395
ConstanciaEstudiosPdf 147 2 1 11 46 91
ConstanciaExpComplPdf 149 2 4 11 50 92
GenDocOfiActionBean 54 4 0 4 13 0
GenDocOfiEJBBean 268 10 8 46 35 68
AdminOfertaBean 1223 50 5 197 237 109
AdminOfertaEJBBean 1784 59 26 187 110 532
Total 11745 340 443 1533 1710 2202

Table 10. Unique values metrics

Metric Value
Lack of Cohesion of Methods 1
Number of Children 0
Depth of Inheritance Tree 1

Table 11. Values that exceed the thresholds

Class

Lin
es

 o
f c

od
e

Me
th

od
s

Co
m

m
en

t l
in

es

We
igh

te
d

Me
th

od
s p

er
 C

la
ss

Re
sp

on
se

 fo
r c

la
ss

Du
pl

ica
te

d
co

de

AdminBajasActionBean 0
AdminBajasEJBBean 1 103 42

This table continues on the following page ––––––>

159CHAPTER # 8 - ANALYSIS METHODOLOGY FOR QUALITY SOURCE CODE IN SOFTWARE DEVELOPMENT

Class

Lin
es

 o
f c

od
e

Me
th

od
s

Co
m

m
en

t l
in

es

We
igh

te
d

Me
th

od
s p

er
 C

la
ss

Re
sp

on
se

 fo
r c

la
ss

Du
pl

ica
te

d
co

de

CapCalificacionesBean 6 142 406
AutorizarCargaBean 0 66
AutorizarCargaEJBBean 0
RealizarCargaBean 0 104 117
AdminSolCredBean
ImpCredActionBean 108
ValCredActionBean 0 38
CargaMasCredBean 0 52
AdminSolCredEJBBean 1674 39
ValCredEJBBean 5
CargaMasCredEJBBean 16
ImpDocOfiBean 2215 7 366 236 395
ConstanciaEstudiosPdf 1 91
ConstanciaExpComplPdf 4 92
GenDocOfiActionBean 0
GenDocOfiEJBBean 8
AdminOfertaBean 1223 50 5 237
AdminOfertaEJBBean 1784 59 26 110 532

8.	 Conclusions and Future Work

One of the elements to assess various methodologies that ensure quality software de-
velopment is the analysis of code. The idea of proposing an objective assessment of the
source code, through quantifiable metrics is to help that the evaluation process under
any methodology (CMMi, MOPROSOFT, etc) is carried out efficiently. By having well-defi-
ned processes for evaluating the code effort one organization can focus on other areas
less feasible to be processed automatically processes such as planning processes, mo-
nitoring and control, requirements management, among others.

When it is intended to ensure the quality of the source code, having a set of metrics
and their respective reference thresholds can help to start with the modification or co-
rrection of the source code. By having quantitative values one can identify the system’s

160 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

source code that has a red light that could affect future aspects of maintainability, per-
formance, efficiency, or others quality requirements of the system. It is noteworthy that
these thresholds are not law and there will be cases where it can not be within accep-
table ranges, in this cases would have to reach a compromise on the values defined.

To give continuity to this research work is to strengthen the methodology perfecting
phase of improving the source code. Also, to run the implementation of this methodolo-
gy in a software system that uses the heritage property in order to define the thresholds
of the metrics that measure this property.

9.	 References

[1]	 Padron de Empresas con niveles de Calidad´, México. Secretaría de Economía, ene-
ro, 2016. VALUES THAT EXCEED THE THRESHOLDS

[2]	 R. S. Pressman Ingeniería del Software, Un enfoque práctico, 7a ed.Mc Graw Hill.
2010.

[3]	 Agenda sectorial Prosoft 3.0, México. Secretaría de Economía, Enero, 2016.
[4]	 U. S. Poornima and V. Suma, Significance of Quality Metrics during Software Develo-

pment Process, International Conference on Innovative Computing and Information
Processing (ICCIP - 2012), 2012.

[5]	 M. S. Rawat, A. Mittal and S. K. Dubey, Survey on Impact of Software Metrics on
Software Quality, (IJACSA) International Journal of Advanced Computer Science and
Applications, 2012.

[6]	 A. K. Sharma, A. Kalia and H. Singh, Metrics Identification for Measuring Object
Oriented Software Quality. (IJSCE) International Journal of Soft Computing and En-
gineering, 2012.

[7]	 L. H. Rosenberg and L. E. Hyatt, Software Quality Metrics for Object Oriented System
Environments. Crosstalk Journal, Software Technology Support Center, 1997.

[8]	 M. Bray, L. Martin, C4 Software Technology Reference Guide, Software Engineering
Institute, 1997.

[9]	 L. Rosenberg, R. Stapko, A. Gallo, Object-Oriented Metrics for Reliability, Presenta-
tion at IEEE International Symposium on Software Metrics, 1999.

[10]	 M. Lippert, S. Roock, Refactoring in Large Software Projects: Performing Complex
Restructurings Successfully, 2006.

[11]	 S. R. Chidamber, C. F. Kemerer, A metric suite forsz object oriented design, IEEE Tran-
sactions on Software Engineering, 1994.

[12]	 C. A. Lopez, C. R. S´ anchez, A. Portilla, M. A. Mora, ´Usando métricas para el análisis
de calidad del código fuente, ´ 4to. Congreso Internacional de Investigación e Inno-
vación en Ingenieria de Software 2016, CONISOFT16, 2016.

161

Chapter # 9
The importance of functional

and data requirements in
supporting the adoption

process of EHRS

Víctor H. Castillo, Leonel Soriano-
Equigua, José L. Álvarez-Flores, Martha
E. Evangelista-Salazar
Facultad de Ingeniería Mecánica y
Eléctrica
Universidad de Colima
Colima, México
{victorc, lsoriano, alvarez_jose,
maevar}@ucol.mx

Ana I. Martínez-García
Departamento de Ciencias de la
Computación
CICESE
Ensenada, México
martinea@cicese.mx

1.	 Introduction

Electronic health record systems (EHRS) are an important technology for providing
quality and low-cost health care services [1]. Several efforts exist for describing open
and standard EHRS architectures [2, 3], Figure 1 shows the OpenMRS architecture,
which allows the implementation of EHRS. Nevertheless, EHRS has a limited adoption
level, which negatively affects the provision of health care services [1]. Consequently,
attempts for supporting the EHRS adoption process are important. Mainly, the adop-
tion problem of EHRS it has been analyzed from a user perspective, e.g. physicians,
nurses, and administrative staff. However, because of software engineers are signifi-
cant stakeholders in the development process of EHRS, the adoption problem of EHRS
also has been analyzed from a software engineer perspective [4]. Beginning with this
perspective it is possible to analyze the software artifacts for promoting the adoption
of EHRS these systems. From the stages of software engineering process, the requi-
rements engineering stage is critical for helping to understand and define required
services from a system. Proposals for supporting adoption of EHRS with information
systems (IS) are scarce. In [5] is described the use of IS for this kind of support, howe-
ver, in this work it is only depicted design considerations, but it does not describe the
software engineering viewpoint. Accordingly, a software engineering perspective about

162 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

requirements of automatic support for assisting the adoption of EHRS would reveal
a unified point of view about software models for facilitating a greater likelihood of
EHRS adoption.

Figure 1. The OpenMRS architecture [2].

The objective of this study is to prioritize the IS’ requirements that the engineers es-
timate as necessary for supporting the adoption process of EHRS. The article is orga-
nized as follows. The second section describes the central role of the requirements in
the provision of support to adoption of EHRS. Then, in the third section, we depict the
methodological approach for carrying out the prioritization of requirements to automa-
tically support the adoption of EHRS by physicians. Finally, in section four we describe a
conclusion about our work.

2.	 Previous Work

From an interaction design perspective [6], requirements can be classified into four
important types: 1) functional, for denoting what the software should do, e.g. a functio-
nal requirement for an EHRS that it should be able to manage medical records; 2) data,
for specifying features of the required data, e.g. taking into account that the system
under consideration is an EHRS, then the data must be accurate and safe; 3) context of
use, which refers to the conditions (physical, social, organizational and technical en-
vironment) in which the interactive product will be projected to work; and 4) usability
goals, which includes effectiveness, utility, learnability, and memorability.

163CHAPTER # 9 - THE IMPORTANCE OF FUNCTIONAL AND DATA REQUIREMENTS IN SUPPORTING THE ADOPTION PROCESS OF EHRS

Being an important aspect of the software lifecycle, requirements have also been stu-
died from the perspective of EHRS. In [7] it is stated that some clinical data element re-
quirements differed between health care settings, however, the study just explores a cli-
nicians’ perception. Hernández-Ávila et al. [8] identified experiences and best practices
as a guide for gathering the requirements of EHRS, however, these elements were depic-
ted from the analysis of perceptions from state health services officials and IT experts.
Based on the American Medical Informatics Association (AMIA) for clinical decision sup-
port system roadmap [9], Kawamoto and Lobach [10] proposed a service oriented archi-
tecture for EHRS fulfill business requirements, this architecture is founded on diverse
EHRS stakeholder’s viewpoint, which does not include software engineering position.

Kuperman et al. [11] enact content specifications for a Nationwide Health Information
Network Trial Implementations. This work defines specifications for implementing EHRS,
but it is focused on the process for developing the content specifications from a user
standpoint. Several works study EHRS interaction design approaches, but also from the
user perspective [12, 13]. Another work [14] depicts EHRS’ design specifications, this con-
siders the viewpoint from ambulatory EHRS vendors, clinical laboratories, physician or-
ganizations, government agencies, and the HL7 group. But this work does not describe
the use of design specifications from a software engineer’s view. Thereby, we can recog-
nize in analyzed previous work a lack of studying and supporting the adoption process of
EHRS from a software designer perspective. As we previously describe, this perspective
is an important problem for providing health care quality services.

3.	 Method Description

3.1	 Theoretical foundation

In [15] is proposed a knowledge-based architecture for supporting the adoption of EHRS.
Based on the relationship among critical factors for adopting EHRS and knowledge ma-
nagement processes, this architecture supports the development of systems for assis-
ting the adoption of EHRS. This work enacts four system quality attributes for suppor-
ting the adoption of EHRS by physicians: communication among users, workflow impact,
technical support, and expert support. The proposal of [15] is consistent with [5], in
which critical factors for adopting EHRS would be an indicator aspect in the provision
of automatic support for assisting the adoption of EHRS. In [5], the critical adoption fac-
tors for adopting EHRS by physicians are six: user attitude towards information systems,
workflow impact, interoperability, technical support, communication among users, and
expert support.

164 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

From previously explained, and considering that knowledge about an innovation is fun-
damental for supporting an adoption decision [16], we define a conceptual framework
for supporting the adoption of EHRS by physicians, this is founded in two aspects: 1)
the relationship among critical adoption factors of EHRS and information technology
(IT) in knowledge management processes for assisting EHRS’ adoption [5, 15]; and 2) the
mapping of the adoption of innovations to a process of change [16, 17]. Our conceptual
framework comprises four cognitive processes to automatically support the adoption
process of EHRS by physicians. The processes are named “cognitive” because are based
on necessary knowledge for supporting the adoption of EHRS by physicians.

3.1.1	 “Contextualize” cognitive process

First, the contextualize cognitive process helps the user to gather first knowledge about
an innovation in the EHRS, which makes the user aware of this innovation [16, 17]. To be
aware of an innovation is the first step for adopting it.

3.1.2	 “Establish social network” cognitive process

Secondly, the establish social network cognitive process presents user the necessary
contacts for helping her/him to evaluate knowledge about the innovation (given to the
user by contextualize process). Socializing an innovation is an important aspect of the
adoption process of innovations [16, 17].

3.1.3	 “Promote self learning” cognitive process

On the other hand, the promote self-learning cognitive process provides the user with
useful documents for decreasing uncertainty about an innovation. Self-learning also is
an important aspect for promoting adoption of innovations [16, 17].

3.1.4	 “Analyze user interaction” cognitive process

At last, the analyze user interaction cognitive process evaluates if the user (a physician)
was assisted by the other processes in the adoption decision of an innovation in the
EHRS. This analysis helps to determine if the user adopts, or rejects, an innovation in the
EHRS, e.g. a change in the EHRS’ GUI. These cognitive processes helped for designing the
experiment to evaluate our proposal.

3.2	 Expert judgment based assessment

Expert judgment is a formal approach to achieve information to specific questions about
specific problems [18], e.g. defining requirements for automatic assistance to the adop-

165CHAPTER # 9 - THE IMPORTANCE OF FUNCTIONAL AND DATA REQUIREMENTS IN SUPPORTING THE ADOPTION PROCESS OF EHRS

tion of EHRS. The expert judgment approach has been used to assess and support con-
ceptual frameworks in software engineering [19].

The aim of our conceptual framework is to lead the software engineers to define similar
requirements for developing IS to support the adoption of EHRS. The consequence of this,
after using the conceptual framework them would rank these requirements.	

We used a scenario-based approach [20] to identify requirements for automatically sup-
port the adoption of an innovation in EHRS. As a result, we defined interaction scenarios
in which we described how the cognitive processes would support the adoption process
of EHRS. Also, each scenario depicts the way in which every cognitive process relates a
critical adoption factor of EHRS to technology for support this critical factor. Figure 2
shows an interaction scenario in which a physician logs in the EMRS and observes that
it has changed on the main screen. From these scenarios the software engineers would
identify system requirements for automating each cognitive process.

Dr. Gómez is a physician who habitually uses the electronic medical record system. Today he accesses
this system from his consulting room. When Dr. Gómez starts using the system at the beginning of his
duties, he realizes that the system´s main window has been modified and although the overall aspect of
the system looks similar, he is a little confused. When Dr. Gómez explores the interface of the electronic
medical record system, a warning from the system alerts him that the Adoption assistant of the electronic
medical record system has a system tray notification for him. The physician looks into the notification
and a window from the Adoption assistant opens up. When Dr. Gómez checks the window, he reads a no-
tification that informs him that there has been a change in the user interface of the medical record, but
that this change does not affect the structure of the electronic medical record. This knowledge makes him
feel more secure about its use. In addition to this, the adoption support assistant enables the physician
to access the electronic document that contains a user´s guide to the electronic medical record system.
So he opens up the guide and browses it, he screening the document and he realizes that the guide is
much more detailed than the guide they had physically received when taking their training course and
that it is also very updated, containing the explanation to the changes on the user interface he has just
seen in the system. Likewise, after browsed the user´s guide, Dr. Gómez realizes that the adoption support
assistant provides him a list of physicians that are also users of the electronic medical record system and
have some experience with the system, he is also provided with a list of technical support personnel and
their contact information.

After reading the messages from the Adoption assistant, the first patient of the day arrives to the con-
sulting room and Dr. Gómez treats him, glancing at his electronic medical record on the screen. He then
captures the data from this new visit on the electronic medical record, which makes the accomplishment
of his duties easier.

Figure 2. One of the interaction scenarios used for assessing the proposal.

166 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

3.2.1	 Research instrument

We designed an instrument based on the elements of the cognitive processes. The instrument
has 13 questions about system requirements, three about requirements for implementing
each cognitive process and a final question about which would be the necessary technology
for dissuading a reject decision of an innovation in the EHRS. The instrument is organized in
the five sections depicted in Figure 3. Section A asks the participant for personal information,
also, in this section the participant must link critical adoption factors of EHRS with IT in the
knowledge management processes for supporting these critical factors (see Figure 4). Each
participant was provided with a list of critical factors and IT to solve them. It also was provi-
ded with a list of interaction scenarios. Sections B, C, D and E of the instrument are organized
as follows. In Part 1 (see subsections B.1, C.1, D.1 and E.1 in Figure 3) the participant is asked to
relate the events described in the scenarios (e.g. a physician is aware of the GUI modification
and he needs expert support) with IT that can support each cognitive process (e.g. knowledge
directories for supporting social interaction), as it is showed in Figure 4. Then, in Part 2 (see
subsections B.2, C.2, D.2 and E.2 in Figure 3) the participant must specify the type of knowledge
representation structure (e.g. a programming flag specifying if a physician has acceded an
electronic document for contacting him with experts) that could support the implementation
of each relationship specified in Part 1 (see Figure 5). Next, in Part 3 (see subsections B.3, C.3,
D.3 and E.3 in Figure 3) the participant must enact the system requirements for fulfilling each
cognitive process. Additionally, when the participant is responding section E of the instrument
(regarding to Analyze user interaction cognitive process), the participant must describe the
helpful IT for dissuading a possible rejection decision of an innovation in the EHRS (Figure
6). The instrument was revised for the format of the questions and understandability of the
wording. Also, this was reviewed by 2 independent researchers who had significant experien-
ce in the area of software development and adoption of EHRS. The instrument is available by
requesting to the first author.

Figure 3. Instrument structure.

167CHAPTER # 9 - THE IMPORTANCE OF FUNCTIONAL AND DATA REQUIREMENTS IN SUPPORTING THE ADOPTION PROCESS OF EHRS

Figure 4. A section of the instrument. Relationship among critical adoption factors
of EHRS and the information technology in the knowledge management processes

Figure 5. A section of the instrument. A data structure for promoting self learning.

Figure 6. A section of the instrument. Describing information technology
for dissuading a rejection decision of EHRS innovation.

3.2.2	 Expert selection

We based the expert selection process in [19]. The selection of experts for our study
was based on the following four criteria: at least 1 year of software development; 2) wi-

168 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

llingness to act as impartial evaluator; 3) availability to commit needed time and effort;
and 4) willingness to provide effective analysis, and interpretations. We used two modes
of reaching potential respondents: personalized contact and professional referrals. We
sent invitation emails to a selected pool of potential respondents.

3.2.3	 Instrument administration

The assessment involved 10 participants from software development industry and edu-
cational institutions. All ten participants had at least 1 year of experience in software
development. Four out of ten participants previously developed software in the medical
domain, and eight out of ten had experience in all the fundamental software processes,
i.e. software requirement specification, analysis, design, development and testing. The
average experience in development tasks of participants was 6.7 years. All the partici-
pants attended a two hours assessment session.

Results analyzed in this chapter proceed from information collected from sections B.3,
C.3, D.3 and E.3 in the instrument (Figure 3). To collect this information, we ask partici-
pants to answer an open question for each cognitive process. For example, to gather
information about the cognitive process Promote self-learning (section D.3 in the ins-
trument), we asked the following question “If you had to develop a system to promote
self-learning among users of an electronic medical record, what requirements should
fulfill that system?” (see Figure 7). Then, we coded their answers and defined categories,
which are analyzed in next section.

Figure 7. Instrument section for gathering information about the Promoting self learning the
cognitive process.

3.3	 Findings and discussion

The findings are founded on the frequencies of categories expressed by participants for
each of the requirements arisen from the analysis of the interaction scenarios. Table I

169CHAPTER # 9 - THE IMPORTANCE OF FUNCTIONAL AND DATA REQUIREMENTS IN SUPPORTING THE ADOPTION PROCESS OF EHRS

describes the requirements most frequently expressed by software developers (column
Most mentioned requirement), and the requirements less frequently expressed by them
(column Less mentioned requirement).

Table 1. Prioritized requirements by participants

Cognitive process Most mentioned requirement Less mentioned requirement

Contextualize Functional (9/10); data (7/10) Usability goals (1/10); context
of use (2/10)

Establish social network Functional (10/10) Usability goals (4/10); context
of use (4/10); data (2/10)

Promote self learning Functional (10/10) Usability goals (1/10)

Analyze user interaction Functional (10/10); data (7/10) Usability goals (5/10); context
of use (2/10)

The data in Table 1 were obtained as follows. First, we classified the open text-based
answer of participants with regard to one of the four types of requirements we des-
cribe in section II (functional, data, context of use, and usability goals). Each partici-
pant generated four requirement lists similar to Figure 7, one list for each cognitive
process. In total, we classified 40 lists, 10 for each cognitive process, and we count the
occurrence of the type of requirement expressed by each participant. E.g. considering
requirements specified by one of the participants (Figure 7), we incremented in 1 the
counter of functional requirements, because of the participant describes 3 times the
functional requirements: 1) to identify the physician who developed self learning; 2) to
identify provided documents for developing self learning; and 3) to identify documents
(resources) which a physician used for self learning. Some cases, one participant re-
ported more than one kind of requirement. So, we counted requirements described
by participants in each cognitive process, and we defined as a priority requirement
the most common one. In Table I, some cases we cited two or three requirements as
the most or less frequent, this means that its frequency is high or low with regard
the other requirements. E.g. in the row Contextualize, the most cited requirements
are the functional (9/10=90%) and data (7/10=70%); by the other hand, the less cited
requirements are usability goals (1/10=10%) and context of use (2/10=20%). Another
appointment is as follows. In the row Promote self learning (Table I), all the partici-
pants mentioned functional requirements (10/10=100%) as important for supporting
this cognitive process, and the less mentioned requirement was usability goals (10% of
participants described this kind of requirement). In the same row, we observe that no
one described the context of use or data requirements as important for implementing
the cognitive process Promote self-learning, and for this reason they are not included
in the row.

170 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Table 1 shows that functional, firstly, and data requirements, secondly, are the most
frequently described by software developer as an important aspect of developing a
software application to support the adoption of EHRS. The latter implies that functio-
nal and data requirements are the most relevant for implementing the four cogniti-
ve processes. One possible conclusion is that functional requirements denote what
the software should do, while data requirements specify characteristics of the requi-
red data. Then, as scenarios describe information services provided by an EHRS and
the way in which physicians consume these services, software developers would give
more attention to analyze the services than data. However, both the two are defined
by software developers as important for implementing the interaction scenarios.

Otherwise, the less cited requirement for implementing the four cognitive processes
is the context of use requirement. This would be explained because of interaction
scenarios are a context description itself. Then, in some extend the software deve-
lopers would discriminate context requirements because of them are implicit in the
interaction scenario description.

By the other hand, Table 1 shows that usability goals are the second less mentioned
requirement for implementing the four cognitive processes. One potential explana-
tion is that the interaction scenarios do not explicitly describe usability goals, e.g.
efficiency, effectiveness, and safety. Then, software developers would consider less
important this kind of requirement.

As it is observed in previously described results, our findings are strongly influenced
by the scenario based methodology. However, as this methodology is widely accepted
and validated for gathering requirements [20], our results are an important step in
the confirmation of functional requirements as a significant aspect for providing au-
tomatic support to adopt innovations in an EHRS.

Besides, when functional and data requirements are prevalent, usability goals and
context of use requirements were considered less important by software developers
(see Table 1). Thereby, these cases took place when developers examined contextuali-
ze and analyze user interaction cognitive processes. As Figure 8 shows, in a use case
view, these results would be associated with the orientation of cognitive processes:
Contextualize and Analyze user interaction processes are related with usage beha-
vior; by the other hand, establish social network and Promote self-learning processes
are related to the modification of intention to use an EHRS. In this sense, developers
would associate functional and data requirements with usage behavior, and moreo-
ver, establish social network and promote self-learning processes would be associa-

171CHAPTER # 9 - THE IMPORTANCE OF FUNCTIONAL AND DATA REQUIREMENTS IN SUPPORTING THE ADOPTION PROCESS OF EHRS

ted with intention to use. These assumptions require more study, but would imply
important considerations on the development of automatic support for assisting the
adoption process of EHRS.

Figure 8. The cognitive processes from a view of system services.

Software requirement prioritization is an important problem in software engineering,
and it has been studied from several perspectives. Some authors proposed approa-
ches such as system case-based reasoning and neural network [21], case-based ran-
king [22], or software reliability growth modeling [23]. However, considering that the
health care domain has a very particular culture, and adoption of EHRS by physicians
is strongly influenced by socio-technical aspects, this study has taken a step in the
direction of defining functional and data requirements as the most important for pro-
viding automated support to adopt innovations in EHRS. In addition, it is important
to emphasize that sample size in the research design would limit our interpretations,
nevertheless, the experience of the participants in the assessment sessions is an as-
pect that can give value to our results.

4.	 Conclusion

The adoption of EHRS is an important problem for providing health care services.
Mainly, this problem has been faced from a user perspective, omitting the point of
view of software engineers. The software engineer’s point of view is important becau-
se of they play a central role as stakeholders in the development process of EHRS. In
this chapter, we describe the importance of functional and data requirements for de-
veloping automated support to adopt EHRS. The prioritization of these requirements
is supported from a perspective of software engineers. We believe our results are a

172 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

step in the provision of quality health care services, however we recommend that the
approach outlined in this study be replicated in developers using a different develo-
pment methodology to scenario based.

5.	 References

[1]	 S. R. Simon, C. S. Soran, R. Kaushal, C. A. Jenter, L. A. Volk, E. Burdick, et al., “Phy-
sicians’ Use of Key Functions in Electronic Health Records from 2005 to 2007: A
Statewide Survey,” Journal of the American Medical Informatics Association, vol.
16, pp. 465-470, 2009.

[2]	 OpenMRS. (2015, January 18). OpenMRS Platform. Available: http://openmrs.org/
(review font).

[3]	 openEHR. (2008, Febrary 5). The openEHR Foundation. Available: http://www.ope-
nehr.org/

[4]	 V. H. Castillo, A. I. Martínez-García, L. Soriano-Equigua, J. L. Álvarez-Flores, and E.
S. M. E., “Requirements prioritization to develop automated support for adopting
EHRS,” in 2016 4th International Conference in Software Engineering Research
and Innovation, Puebla, México, 2016, pp. 9-14.

[5]	 V. Castillo, A. Martinez-Garcia, and J. R. G. Pulido, “A knowledge-based taxonomy
of critical factors for adopting electronic health record systems by physicians: a
systematic literature review,” BMC Medical Informatics and Decision Making, vol.
10, p. 60, 2010.

[6]	 H. Sharp, Y. Rogers, and J. Preece, Interaction design: beyond human-computer
interaction, 2d ed. West Sussex, UK: Wiley, 2007.

[7]	 S. Collins, A. C. Hurley, F. Y. Chang, A. R. Illa, A. Benoit, S. Laperle, et al., “Content
and functional specifications for a standards-based multidisciplinary rounding
tool to maintain continuity across acute and critical care,” Journal of the Ameri-
can Medical Informatics Association, vol. 21, pp. 438-447, 2014.

[8]	 J. E. Hernández-Ávila, L. S. Palacio-Mejía, A. Lara-Esqueda, E. Silvestre, M. Agude-
lo-Botero, M. L. Diana, et al., “Assessing the process of designing and implemen-
ting electronic health records in a statewide public health system: the case of
Colima, Mexico,” Journal of the American Medical Informatics Association : JAMIA,
vol. 20, pp. 238-244, 2013.

[9]	 J. A. Osheroff, J. M. Teich, B. Middleton, E. B. Steen, A. Wright, and D. E. Detmer, “A
Roadmap for National Action on Clinical Decision Support,” Journal of the Ame-
rican Medical Informatics Association, vol. 14, pp. 141-145, 2007.

[10]	 K. Kawamoto and D. F. Lobach, “Proposal for Fulfilling Strategic Objectives of
the U.S. Roadmap for National Action on Decision Support through a Service-

173CHAPTER # 9 - THE IMPORTANCE OF FUNCTIONAL AND DATA REQUIREMENTS IN SUPPORTING THE ADOPTION PROCESS OF EHRS

oriented Architecture Leveraging HL7 Services,” Journal of the American Medical
Informatics Association, vol. 14, pp. 146-155, 2007.

[11]	 G. J. Kuperman, J. S. Blair, R. A. Franck, S. Devaraj, and A. F. H. Low, “Developing
data content specifications for the Nationwide Health Information Network Trial
Implementations,” Journal of the American Medical Informatics Association, vol.
17, pp. 6-12, 2010.

[12]	 L. A. Lenert, D. Kirsh, W. G. Griswold, C. Buono, J. Lyon, R. Rao, et al., “Design and
evaluation of a wireless electronic health records system for field care in mass
casualty settings,” Journal of the American Medical Informatics Association, vol.
18, pp. 842-852, 2011.

[13]	 A. Muñoz, R. Somolinos, M. Pascual, J. A. Fragua, M. A. González, J. L. Monteagudo,
et al., “Proof-of-concept Design and Development of an EN13606-based Elec-
tronic Health Care Record Service,” Journal of the American Medical Informatics
Association : JAMIA, vol. 14, pp. 118-129, Jan-Feb 2007.

[14]	 W. V. Sujansky, J. M. Overhage, S. Chang, J. Frohlich, and S. A. Faus, “The Deve-
lopment of a Highly Constrained Health Level 7 Implementation Guide to Faci-
litate Electronic Laboratory Reporting to Ambulatory Electronic Health Record
Systems,” Journal of the American Medical Informatics Association, vol. 16, pp.
285-290, 2009.

[15]	 V. Castillo and A. I. Martínez, “A knowledge management architecture for suppor-
ting the adoption of clinical information systems,” in Eighth Mexican Int. Conf. on
Computer Science (ENC 2007), Morelia, México, 2007.

[16]	 E. Rogers, Diffusion of innovations, 5th ed. New York: Free Press, 2003.
[17]	 C. Roda, A. Angehrn, T. Nabeth, and L. Razmerita, “Using conversational agents to

support the adoption of knowledge sharing practices,” Interacting with Compu-
ters, vol. 15, p. 57, 2003.

[18]	 B. M. Ayyub, A Practical Guide on Conducting Expert-Opinion Elicitation of Proba-
bilities and Consequences for Corps Facilities. VA, USA: Institute for Water Resou-
rces, 2001.

[19]	 M. Ali Babar and B. Kitchenham, “Assessment of a Framework for Comparing Soft-
ware Architecture Analysis Methods,” presented at the 11th International Con-
ference on Evaluation and Assessment in Software Engineering (EASE), Keele,
Staffordshire, UK, 2007.

[20]	 M. B. Rosson and J. M. Carroll, Usability engineering: scenario-based develop-
ment of human computer interaction, 1st ed. San Francisco, CA: Morgan Kauf-
mann, 2002.

[21]	 H. Mat Jani and A. B. M. Tariqul Islam, “A framework of software requirements
quality analysis system using case-based reasoning and Neural Network,” in In-

174 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

formation Science and Service Science and Data Mining (ISSDM), 2012 6th Inter-
national Conference on New Trends in, 2012, pp. 152-157.

[22]	 A. Perini, A. Susi, and P. Avesani, “A Machine Learning Approach to Software Re-
quirements Prioritization,” Software Engineering, IEEE Transactions on, vol. 39, pp.
445-461, 2013.

[23]	 P. L. Li, R. Nakagawa, and R. Montroy, “Estimating the Quality of Widely Used Soft-
ware Products Using Software Reliability Growth Modeling: Case Study of an IBM
Federated Database Project,” in Empirical Software Engineering and Measure-
ment, 2007. ESEM 2007. First International Symposium on, 2007, pp. 452-454.

175

Chapter # 10
Towards an Enterprise

Architecture framework for
an IT SME: Miracle Business

Network

Maria-Isabel Crescencio-Lucero*‡, Juan-Manuel Muñoz-Pérez*‡, Alberto Portilla*‡,
Carolina-Rocío Sánchez-Pérez*‡, Francisco Hernández-Jiménez*†
and Marva-Angelica Mora-Lumbreras*
*	 Autonomous University of Tlaxcala (UATx)
	 Faculty of Basic Sciences and Engineering and Technology
	 Apizaquito S/N Street, Apizaco, Tlaxcala
‡	 Miracle Business Network S.A. de C.V. (MBN)
	 Innovation and Development Center (CIDT)
	 37 Street, No.216 La Loma Xicohtencatl Tlaxcala, Tlaxcala
†	 Higher Technological Institute of the Sierra Norte de Puebla
	 José Luis Martinez Vazquez Avenue No. 2000, Jicolapa, Zacatlan, Puebla
	 fmaria.isabel.c.l, juan.manuel.mp8, alberto.portilla, krlinasp, franherjim,

marva.morag@gmail.com

1.	 Introduction

Nowadays most of the companies in Mexico are micro, small or medium enterprises,
making up more than 95% of the total industry, which makes them an essential part
of the Mexican economy [1]. In this context, the sector dedicated to Information Tech-
nologies (IT) shows sustained growth and is becoming increasingly important in the
country’s economy. In 2010 the IT sector represented 5.6% of gross domestic product
(GDP) and its importance was greater than the total of primary activities (3.8%) [2]. In
[3] it is emphasized that Small and Medium Enterprises (SMEs) IT have certain limi-
tations to achieve competitive performance at national and international level. The
problems they face are diverse, including the following: access to finance, skills weak
managerial and labor management, lack of market opportunities, new technologies
and methods of work organization. As a result, many SMEs do not show sustained
growth and experience higher operating costs and higher rates of business failure.
An Enterprise Architecture (EA) is a way to establish methodologically the elements
through the time associated with the ITs that form part of the capital of the company.

176 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

It allows you to align and integrate dynamically objectives and business processes
of an organization with the information technology required to, i) guide, limit and
prioritize the plan investments, ii) justify the application of emerging technologies,
iii) improve communication among all areas of a given company and, iv) provide a
structure that displays the complexity and interaction of systems and applications.
This is why companies whose adequately define its own EA are better prepared
for decision-making, adaptability to the environment and support the growth of it.

There are several frameworks to define an EA, such as Zachman, TOGAF, FEA, and
DODAF, which provide a series of steps to reach their definition, implementation
and application within an organization. For the implementation of a business
process architecture you can choose one or more frameworks. However, each fra-
mework has components that differ from each other, therefore it is necessary to
define a set of characteristics according to the needs and objectives of the com-
pany in order to define which one will be used. The framework chosen should be
able to provide tools focused on the design, planning, implementation and gover-
nance, these aspects enable the continuous improvement of the organization over
time. In this chapter, we aim to define the dimensions and features that are useful
for an SME business, and in particular for Miracle Business Network (MBN), which
is an IT SMEs in the Mexican market. We compare the TOGAF, FEA and Zachman fra-
meworks in order to obtain an ad-hoc framework for MBN needs. It is an extension
to published paper at the 4th edition of the International Conference on Software
Engineering Research and Innovation (CONISOFT’16), on this chapter have been
added the implementation proposal section and another future works [14]. The rest
of the chapter is organized as follows, section II introduces the concept of EA and
a few representative EA, section III summarizes the methodology proposed for the
election of the framework in an SME and the way it was working, section IV shows
you how to use our work taking criteria for major relevance for SMEs MBN, section
V contains works related to ours, section VI describes the proposal implementation
in MBN Company and some diagrams that have already been designed related with
the MBN Enterprise architecture and finally in section VI the conclusions that were
reached with this work and future work are detailed.

2.	 Enterprise Architecture

An EA can be seen as a framework for the definition of the information involved in
business processes of the company and its support by using IT. An EA framework
defines the alignment between business strategy and information technology [4,
5, 9].

177CHAPTER # 10 - TOWARDS AN ENTERPRISE ARCHITECTURE FRAMEWORK FOR AN IT SME: MIRACLE BUSINESS NETWORK

The Open Group Architecture Framework (TOGAF) defines the term Enterprise Archi-
tecture as [5]:

•• A formal description of the system detailed at the component level to guide its
implementation plan.

•• The structure of the components, their interrelationships, and the principles and
guidelines governing their design and evolution over time.

An EA is related to i) the goals of an organization and ii) how the systems can propose
ways to organize processes in order to optimize resources and achieve objectives. Six
components are identified within an EA: strategy, IT governance, information systems,
information technology services, use and appropriation. Because of there are seve-
ral methodologies and frameworks that give guidelines on how to build an EA, in the
next subsections, we present a brief description of most interesting EA frameworks
for this chapter.

2.1	 TOGAF

TOGAF (The Open Group Architecture Framework) has a set of basic guidelines for the
analysis and definition of the status of an EA. Specifically, it presents a method for
developing EAs called ADM (Architecture Development Method) [11]. TOGAF is based
on four dimensions:

•• Business Architecture (or Business Process), which defines the business strategy,
governance, structure and key processes of the organization.

•• Application Architecture, which provides a plan (blueprint) for each application
systems required to implement, interactions between these systems and their
relationships with core business processes of the organization.

•• Data Architecture, which describes the structure of the physical and logical orga-
nization data, and management resources of these data.

•• Technology architecture, which describes the structure of hardware, software
and networks required to support the implementation of the main applications
of the organization.

The main TOGAF objectives is to establish a link between Business and IT companies,
providing multiple benefits to both areas, such as cost reduction, risk reduction, iden-
tifying opportunities, flexibility, adaptation and common language.

178 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

2.2	 ZACHMAN

It is a framework for EA, created and supported by ZIFA (Zachman Institute for Fra-
mework Advancement). This framework uses models and views of the different ele-
ments that are part of the EA, considering two dimensions [10]:

•• Participants perspectives or models.

•• Basic questions or views.

The framework defines the artifacts that are part of the architecture, employing a
common language for all involved. It serves basically for implementing EA in compa-
nies (large, medium or small). To carry out this task of definition and implementa-
tion, Zachman considers different profiles, roles and skills that should be involved in
the process, and special emphasis on the problems of communication and unders-
tanding existing between these profiles. To achieve this understanding in a simple
and intuitive way, Zachman defines the following questions, to be answered by each
profile to define completely Architecture: What? - How? Where? - Who? - When? -
Why? [9], each model is related to a particular profile within the company and are
indicated by the scope, business, system, technology, detailed representation, and
the configuration of components and functional levels of the company. Zachman
contributes to the simplicity, flexibility, standardization and adaptability when an EA
is defined.

2.3	 FEAF

FEAF (The Federal Enterprise Architecture Framework) is used for the development,
management, maintenance, and decision-making related to an EA. FEAF provides a
structure to organize resources and to describe the process management of enter-
prise architectures [12]. It is a collection of correlated references models which help
with the definition of business functions and the analysis and optimization of IT
operations.

FEAF allows the integration of information and the sharing of such information, there-
fore, it helps for the establishment of collaboration between the organizations. FEAF
contains five reference models:

•• Business Reference Model (BRM)

•• Data Reference Model (DRM)

179CHAPTER # 10 - TOWARDS AN ENTERPRISE ARCHITECTURE FRAMEWORK FOR AN IT SME: MIRACLE BUSINESS NETWORK

•• Application Reference Model (ARM)

•• Infrastructure Reference Model (IRM)

•• Security Reference Model (SRM)

FEAF is used by the United States government organizations.

TOGAF, ZACHMAN and FEAF have in common 4 areas:

•• Government.	

•• Data.

•• Business.

•• Technical aspect.

However, each framework approaches them with different philosophies: i) Zachman is
a taxonomy used to organize architectural artifacts (design documents, specifications
and models), ii) TOGAF is oriented to well defined processes in everyone enterprise
areas, and iii) FEAF is a methodology that facilitates the analysis and identification of
duplicate investment, differences and opportunities to collaborate within and across
agencies.

Therefore, we argued that it is necessary to analyze each framework to select and
implement the best features of them to define a framework help us with SMEs in our
country.

3.	 Characterising EA frameworks

In this section, we present a methodology for analyzing EA frameworks in order to
propose a set of dimensions for analyzing the implementation of an EA. The proposed
dimensions are based on the MBN needs, which not only wants to define its own EA
but it wants to incorporate it as part of the practices offered in the custom develop-
ment systems.

3.1	 Analytical methodology for EA implementation

The Figure 1 shows the methodology followed for analyzing the implementation of an
enterprise architecture in a SME Company.

180 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Figure1. Analysis methodology

•• Definition. The definition of MBN needs at the moment of implementing an en-
terprise architecture. A key need for MBN is to define documents that contain the
complete system architecture over different approaches, plus they must be aligned
with the company objectives. The priority of an SME is to demonstrate that carries
out its activities under quality standards but often they do not have enough bud-
get to adopt international industry standards. In MBN there are certain problems
in common with other SMEs (e.g. MBN Customers). The main problems and needs
that they have are:

»» There is a lot of information continuously increasing, so there is a need for
managing such information to be useful.

»» The technological infrastructure that MBN has is inefficient and / or emplo-
yees unknown about its capacity. It must know the technology components
owned by a company in order to manage and configure it, and to have the
perspective that corresponds to address future problems with such techno-
logy components.

»» MBN has systems for automating business processes, however, these are iso-
lated efforts in particular areas without sharing information. Areas are requi-
ring to provide information to achieve the companies objectives.

»» The company MBN has processes based on standards like MOPROSOFT and
CMMI. However, there are internal communication problems. Companies need
to have a correct interaction between all processes.

»» MBN does not have the financial resources to pay an implementation of an enter-
prise architecture framework but it has the need for structuring an EA by adopting
or adapting frameworks characteristics that provide enough information.

•• Analysis. It is based in a study of enterprise architecture frameworks; we have
chosen 5:

»» DoDAF Department of Defense Architecture Framework.

181CHAPTER # 10 - TOWARDS AN ENTERPRISE ARCHITECTURE FRAMEWORK FOR AN IT SME: MIRACLE BUSINESS NETWORK

»» FEAF Federal Enterprise Architecture Framework.
»» OEAF Oracle Enterprise Architecture Framework
»» TOGAF The Open Group Architecture Framework
»» ZACHMAN

This selection is based on frameworks popularity and the organization activity to which
they are focused.

•• Selection. Three frameworks were selected (FEAF, TOGAF and Zachman) due to fo-
llowing reasons:

»» Information available through different media, such as books provided by the
framework creator, architecture books and scientific papers.

»» They are among the most used frameworks in the enterprise market, except
FEAF because it is focused on government area. However, it is important for
companies to know what the government demands in the projects.

»» The three Enterprise Architecture frameworks define the same type of archi-
tecture: business architecture, data architecture, application architecture and
system architecture.

OEAF and DoDAF were excluded due to the following reasons:

•• Missing documentation to perform an analysis of their operation

•• They are not found within the Enterprise architecture frameworks of enterprise ar-
chitectures commonly used in business.

•• Criteria definition. A list of criteria was defined because of analyzing the needs ob-
tained in the first stage. We conducted meetings with fourteen operating engineers,
two process managers and two Administrative of MBN company. Besides, it is inten-
ded that the criteria list can help to SMEs for choosing an EA framework or for choo-
sing certain criteria for each framework that are relevant to the company. The Table
1 shows the criteria definition we proposed with a discussion about its relevance in
SMEs. Subsequently, an investigation was performed between frameworks to know
if they can meet each one of the criteria. The result of this research was used to
adjusting a framework for a company having clear their priorities and needs or to
make the decision to implement its own EA framework. The Table 1 contains the
result of the comparison of frameworks they are based on the 14 essential criteria
for choosing the EA framework.

182 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Table 1. Criteria and their importance

Criteria Importance

Documentation access
To know the information availability in books and internet
to analyze the enterprise architecture framework or to
know if it is necessary to pay for get information.

Does it have certification?
It allows the company to be recognized by an accrediting
body by the correct implementation of framework in the
company.

How many layers or views it
handles?

Defining the number of layers or views allow us to
know the different types of architectural design in each
software development project.

Does it define artifacts?
It helps the company to know the number, type and
content of artifacts to generate by each layer or view
architecture.

Does it have development
method?

If the framework has an architecture development,
method it will guide to the company through a set of
steps to implement an enterprise architecture.

Does it describe what to
implement?

It allows the company to know activities to be undertaken
after to finalize each of the steps shown in the
architecture development method.

Does it describe how to
implement?

It provides a steps guide about how to implement the
enterprise architecture framework.

Does it consider the business
perspectives?

It will allow to show documentation focused on the role
of the delivered area.´

Target company size Based on the company current size this allow us to know
if it can be easily adapted within it.

Does it indicate how to classify the
different artifacts? It allows organizing the artifacts focused by areas.

Does it provide an evaluation of
efficiency and maturity in the
architecture implementation?

It lets to know about the implementation level that has
a framework in the company, like evaluations CMMI or
MOPROSOFT.

Does it provide a guide to
understanding and creating a
model of governance?

It will help take control of each of the products generated
by the company for future changes and re-use, to
gradually reduce response times of requested services.

Implementation time in months
Based on the need and urgency level it will allow the
company to know the implementation time of each
framework to make a decision about what framework
must choose.

The complexity degree in the
enterprise Adaptation

It displays if is necessary to do many changes in the
actual enterprise process to implement the framework.

•• Criteria discrimination. Based in Table 1 and Table 2 the discrimination criteria
are done by assigning a value of important or unimportant, this importance value
should be assigned by the staff of SMEs due to each has different needs.

183CHAPTER # 10 - TOWARDS AN ENTERPRISE ARCHITECTURE FRAMEWORK FOR AN IT SME: MIRACLE BUSINESS NETWORK

Table 2. Selection criteria

CRITERIA ZACHMAN TOGAF FEAF
Documentation access Yes Yes Yes
Does it have certification? Yes Yes Yes
How many layers or views it handles? 5 4 5
Does it define artifacts? Not Yes Yes
Does it have development method? Not Yes Yes
Does it describe what to implement? Yes Yes Yes
Does it describe how to implement? Not Yes Yes
Does it consider the business
perspectives? Yes Yes Yes

Target company size Micro bigger or Micro bigger or Government
Does it indicate how to classify the
different artifacts? Good Good Excellent

Does it provide an evaluation of efficiency
and maturity in the architecture
implementation?

Not Not Not

Does it provide a guide to understanding
and creating a model of governance? Not Yes Yes

Implementation	 time	 in months 1 to 3 6 to 9 6 to 9
The complexity degree in the enterprise
Adaptation Medium High High

•• Implementation. We compare how is implemented the criteria by each framework.
We try to find the best practices by EA framework if possible. Otherwise, we com-
bine best practices of several frameworks. After this selection, an implementation
was performed in a real project in MBN Company.

4.	 Study Case: MBN

Once we have defined the general criteria for EA frameworks, a level of importance for
each one according to MBN was assigned, in order to consider only those that align with
the strategic objectives and needs of the organization.

For each of the 14 criteria were assigned two values of importance for the company: Im-
portant and Unimportant.

The Table 3 shows the criteria list with their importance for MBN Company, these values
allow considering or not some aspects of each framework, which can later implement in
an ad-hoc framework.

184 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Table 3. MBN Importance

CRITERIA MBN
IMPORTANCE

Documentation access Important
Does it have certification? No important
How many layers or views it handles? Important
Does it define artifacts? Important
Does it have development method? Important
Does it describe what to implement? Important
Does it describe how to implement? Important
Does it consider the business perspectives? Important
Target company size No important
Does it indicate how to classify the different artifacts? Important
Does it provide an evaluation of efficiency and maturity in the architecture
implementation? No important

Does it provide a guide to understanding and creating a model of governance? Important
Implementation time in months No important
The complexity degree in the enterprise Adaptation No important

The value of Important and not Important was obtained derived from a meeting with 8
operating engineers, 2 administrators and 2 business processes managers all from MBN,
these criteria were shown and explained and based on their needs they assigned the co-
rresponding value. As you can see the criteria that are not important to the company are
those that would cause a specific framework implementation, for example, certification,
cost or implementation time and the criteria that are important to the company are those
that we can use to combine the best features from every framework. The result will be a
hybrid EA implementation, in this case, we can mention as examples the criteria: docu-
mentation, method development and governance model, among others.

If the company chooses to take some criteria of different EA frameworks it should im-
plement a hybrid architecture, considering the converging points from each architecture
types and diagrams that we must be generated in each of them, also considering deve-
lopment methods and governance models. After getting this information, the company
must choose which aspects of each framework are relevant for implementation.

5.	 Related works

Several frameworks provide guidance for implementing an AE in an organization focused
on different business types, which hinders the process of choosing the EA framework
that best suits a given company.

185CHAPTER # 10 - TOWARDS AN ENTERPRISE ARCHITECTURE FRAMEWORK FOR AN IT SME: MIRACLE BUSINESS NETWORK

In [6] a comparative of enterprise architecture frameworks is presented: Zachman,
TOGAF, FEAF and Gartner. In this research, an study case is described. The study is
related to a pharmacy chain and how the problem would be solved with each of the
EA frameworks described. They defined 12 criteria for comparing and evaluating en-
terprise architecture methodologies. They were based on these criterions to provide
a brief recommendation based on assigned score to each criteria in order to choose
the methodology that best suits to the company. Our work is strongly inspired by this
research but focused in the context of a SME.

In [7] a comparison between TOGAF and Zachman was performed. To make this com-
parison they studied each of the frameworks highlighting the objectives they seek
and the main points he works each. In this research, they use the 12 criteria defined
in the work [6] and they mention that not all of these criteria may be relevant to
the organization and some will be more important than others. They suggested that
Zachman taxonomy could be used as a complement to TOGAF.

In [8] a work plan is done to reduce the initial complexity of the adoption of
TOGAF framework prioritizing and adapting its application in a knowledge base
architecture maturity models. The goal is that the initial dip to TOGAF was less
daunting to take the standard. They propose to carry out a work plan for the im-
plementation of TOGAF, which is based on a maturity model with continuous im-
provement NASCIO. The maturity model has six levels, where companies without
level have an immature implementation and they can progress through the levels
until to reach a mature implementation (level 6). As results, they got a mapping
each NASCIO elements towards TOGAF elements, simplifying implementation and
considering some elements related to the maturity level that the enterprise has.
They achieved to separate the artifacts by each level NASCIO. His work is theore-
tical because it was not possible to test that all TOGAF elements can be imple-
mented in an organization.

6.	 Implementation proposal

We considered that for choosing an EA framework, we must take into account the next
question: what are the company needs? it will help us to know which framework is
the one that meets those needs.

The main criterion for the design and implementation of enterprise architecture will
be the number of layers or views that manage, considering the layers of greater im-
portance for the company, regardless of the framework to which they belong.

186 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Initially, the proposal is to implement the architecture layers that are similar in the
frameworks, starting from this point, the company will have a base to continue imple-
menting the layers that are different between the frameworks and they consider useful
within your organization.

The three frameworks we analyzed have four layers in common, which are techno-
logy, business, data and systems. Such layers are considered in our proposal for
implementation.

In the next subsections, we describe an implementation example of each architecture
layer. All that is shown do not cover every defined aspect by each layer, but it gives us
an initial perspective about how to begin the implementation.

The Figure 2 shows the architecture types defined by every framework, it is highlighted
with the same color the layers that are similar, for example the Data Architecture layer
from TOGAF, the System Information Model layer from Zachaman and the Data Refe-
rence Model layer from FEAF are highlighted in blue color because they are modeling
the architecture related to data.

Figure 2. Comparative of frameworks layers

6.1	 Business Architecture

The Business Architecture defines the business strategy, government, organization and
key business processes [5].

187CHAPTER # 10 - TOWARDS AN ENTERPRISE ARCHITECTURE FRAMEWORK FOR AN IT SME: MIRACLE BUSINESS NETWORK

The MBN processes are based in NMX-I-059-NYCE2011 (MoProSoft) which is a Mexican
quality standard, therefore they were considered in the business architecture design
and implementation.

For the business architecture description was designed BPMNs diagrams, they model
the workflow of each enterprise department. At enterprise level were defined the next
processes:

•• Business management

•• Business projects

•• Business resources

•• Project Management

•• Human resources

•• Assets, services and infrastructure

•• Organization knowledge

•• Development and software maintenance

The Development and software maintenance process was designed and implemented
using the quality model CMMI DEV 2. The Figure 3 shows you an example of the BPMN
diagram related to the designed processes and implemented for the business architec-
ture. Every rectangle represents a process for the enterprise.

Figure 3. General diagram of business process

188 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

6.2	 Technology Architecture

The objective of the technology architecture is to provide the IT support (platforms, ope-
rative systems, databases, network and telecommunications) [5]. The Technology Archi-
tecture design should be used as a guide when there is a need to work in a maintenance
or upgrade of it (see Figure 4). The Technology Architecture document contains three
sections:

•• Devices On this section there are described the characteristics of the network
components.

•• Network diagram, this section includes a diagram that shows the enterprise topo-
logy network.

•• Settings, it has the references toward another document that has instructions
about network devices configuration.

Figure 4. General Diagram of Network Infrastructure Company

6.3	 System Architecture

The system architecture provides a plane for every system that will be implemented,
interactions between them and their relationships with business process in the organi-
zation [5].

189CHAPTER # 10 - TOWARDS AN ENTERPRISE ARCHITECTURE FRAMEWORK FOR AN IT SME: MIRACLE BUSINESS NETWORK

The objective is to show the design of system architecture implementation, their interac-
tions and their relationships with the company business process. The diagram designed
contains the systems and their users. The Figure 5 shows the diagram design; in it they
can see the systems architecture in the company.

Nowadays the company has 6 systems and they are working by separate form, therefore
they need to be integrated with a SOA Implementation.

Figure 5. General Diagram of Systems Company

7.	 Data Architecture

The data architecture describes the logical organization enterprise and the management
resources [5].

For this architecture was performed a design about how is management the enterprise
information. To achieve this work a knowledge base was created and it contains every
Enterprise area, their structure was defined by organization knowledge process because
it is the responsible for add and remove permissions on it.

190 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

To manage the knowledge base, a document was created, it contains the general rules
that must be followed when information is modified. Figure 6 show us the diagram de-
sign of this architecture.

	

	 Figure 6. General Diagram of Data Company

8.	 Conclusions and future work

Today, organizations expect to have technological solutions that i) support the objecti-
ves and business processes, ii) manage IT services in an efficient way, and iii) address
the company from its various dimensions (business, data, applications and infrastruc-
ture). For this proposal, process and methodologies have been designed to let to the
organizations aligning their efforts to business goals under the described dimensions.

We argued that it is imperative that SMEs in our country are able to address issues
related to best practices, methodologies, models and tools enabling them to function
in a highly competitive, regulated and changing environment in order to meet the
challenges that the IT industry demands. In this context, companies seek to define
Enterprise Architectures that provide a model of integration supported by a strategic
planning.

In this chapter, we present an analysis of three EA Frameworks and its associated cri-
teria. It is important that companies wishing to implement an enterprise architecture

191CHAPTER # 10 - TOWARDS AN ENTERPRISE ARCHITECTURE FRAMEWORK FOR AN IT SME: MIRACLE BUSINESS NETWORK

know the dimensions that can cover each of the frameworks. Based on the set of crite-
ria defined in this chapter you can get a guide for choosing a particular framework or
for performing an implementation of a hybrid EA within a given organization.

The analysis we present in this chapter will be the guide for the implementation of a
hybrid enterprise architecture at the company MBN. Therefore, a practical proposal for
the initial implementation of an EA was sketched.

We consider that for each criterion it is very important to follow the next steps:

•• To perform an analysis of how the criterion is implemented in each of the fra-
meworks chosen.

•• To choose the framework that implements the criterion in the most complete,
simple and understandable way, or trying to make a mixture of the best features
provided by each framework.

•• To perform the implementation of the criterion.

As a future work, we plan to present the implementation of the EA framework at MBN
along with all the documents, artifacts, process and models related to such an EA fra-
mework. We are also working in a detailed way for defining a set of common needs of
SME in order to propose an EA framework adapted to Mexican enterprises.

9.	 References

[1]	 M.C. Gutierrez M.C., L. Pinon, A. Sap en. “Modelos de Calidad usados en PyMES de
tecnologías de information ubicadas en el parque de Innovación y Transferencia
de Tecnología de la Ciudad de Chihuahua. 2011.

[2]	 R. Gallegos, C. Grandet, P. Ramirez. “Los Emprendedores de TIC en Mexico. Reco-
mendaciones de política publica para su nacimiento, crecimiento y consolida-
ción”. 1ra. Edición. Instituto Mexicano para la Competitividad A.C. 2014.

[3]	 G. Lopez-Acevedo y H. Tan. “Impact Evaluation of SME Programas in Latin America
and Caribbean”, Washington USA. World Bank. 2010.

[4]	 A. Valdez-Menchaca, C. Vega-Lebrun, E. Olivares-Benitez,
[5]	 J. Perez-García, O. Arzola-Garza. O. Preciado-Martínez, S. Castaneda-Alvarado.

“Practical Application of Enterprise Architecture Study Case of SME Metalmecha-
nic in Mexico”, European Scientific Journal Special edition Vol. 1. 2013.

[6]	 The Open Group, “Welcome to TOGAF® Version 9.1, an Open Group Standard”, 2011.
[Online]. Available: http://pubs.opengroup.org/architecture/togaf9-doc/arch/

192 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

[7]	 Roger Sessions, ObjectWatch, Inc. “A Comparison of the Top Four Enterprise-Archi-
tecture Methodologies”, 2007. [Online]. Available: https://msdn.microsoft.com/en-
US/enus/library/bb466232.aspx

[8]	 Alok Singh, Pankaj Mudholkar, Lovely Lakhmani Balani. “Contemporary Enterprise
Architecture Frameworks (A Comparative study of TOGAF and Zachmans EA fra-
meworks)” 2014

[9]	 R.W. Gosselt, A Maturity. “Model based Roadmap for Implementing TOGAF”, 17th
Twente Student Conference on IT, 2012

[10]	 John A. Zachman. “Architecture is Architecture is Architecture”, 2011. [Online]. Avai-
lable: http://www.zachman.com/ea-articles-reference/52architecture-is-architec-
ture-is-architecture-by-john-a-zachmant

[11]	 John A. Zachman. “What is Enterprise Architecture and why do we do it?”, 2015. [On-
line]. Available: http://www.zachman.com/faqs/20enterprise-architecture-faqs

[12]	 Philippe Desfray, Gilbert Raymond. “Modeling Enterprise Architecture with TOGAF”,
2014

[13]	 www.whitehouse.gov, “Federal Enterprise Architecture Framework Version 2”, 2013.
[Online]. Available: https://www.whitehouse.gov/ sites/default/files/omb/assets/
egov docs/fea v2.pdf

[14]	 http://dof.gob.mx, “Diario Oficial de la Federacion”, 2016, [Online]. Available: http://
dof.gob.mx/nota_detalle_popup.php?codigo=5096849

[15]	 Maria-Isabel Crescencio-Lucero, Juan-Manuel Munoz-Perez, Alberto Portilla, Caro-
lina-Rocio Sanchez-Perez, Francisco Hernandez-Jimenez and Marva-Angelica Mora-
Lumbreras “4to. Congreso Internacional de Investigación e Innovación en Ingeniería
de Software”. Tijuana, Baja California: Universidad Autónoma de Baja California,
2016. ISBN 978-0-692-69638-5 p. 23.

193

Chapter # 11
User-oriented application for

source code metrics definition
and extraction based on a

metrics framework

Alberto S. Núñez-Varela, Héctor G. Pérez-González, Francisco E. Martínez-Pérez,
Juan Cuevas-Tello
Facultad de Ingeniería
Universidad Autónoma de San Luis Potosí
San Luis Potosí, México
alberto_snv@hotmail.com, hectorgerardo@yahoo.com, fcoemtz@gmail.com,
cuevas@uaslp.mx

1.	 Introduction

Software product metrics are essential tools for the metric measurement process. A
metric is defined by the IEEE Std. 610.12-1990 standard [1] as “A function whose inputs
are software data and whose output is a single numerical value that can be interpre-
ted as the degree to which software possesses a given attribute that affects its quality”.

Metrics are usually divided on two categories, process and product metrics [2]. In this
research, we are interested in product metrics for source code measurement, which are
metrics used to measure quality attributes of the source code such as size, complexity,
cohesion, coupling, design, maintainability, etc. These metrics are usually known as
source code metrics and are the main focus of this paper. These types of metrics inclu-
de well-known metrics such as lines of code (LOC), cyclomatic complexity [3] and the
Halstead metrics [4], along with object-oriented metrics such as the Chidamber and
Kemerer metric set [5] and the MOOD set [6]. Metrics have been used over the years for
measuring software quality attributes, but they provide a wider range of applications
and studies, such as fault prediction and defect prediction, as shown in [2].

In order to extract the source code metrics, several mechanisms and tools have been
proposed over the years, but the process for metric extraction is not an easy task and

194 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

as software systems grow in size, their components, such as the source code, beco-
me harder to handle. Systems with thousands of lines of code could make the metric
extraction process an almost impossible task if done manually [7]. In order to handle
source code of any size, automated tools have been developed for metric extraction,
and these tools are usually known as Software Metric Tools (SMT). Many tools have
been proposed through the years as research and commercial efforts, but due to the
number of metrics and programming languages in existence, these tools are not easy
to create and maintain.

Current software metric tools, especially if commercial, present some issues. The
tools characteristics are affected and limited by the set of metrics defined and the
number of programming languages these recognize; the user is not allowed to defi-
ne new metrics or incorporate new languages into the tools. It is also important to
mention that current software metric tools focus on object-oriented metrics, and
other programming paradigms have been neglected. Object-oriented programming
is the most common and used programming paradigm for software development,
but other paradigms are widely used and studied. Two paradigms in particular, as-
pect-oriented programming and feature-oriented programming, have been gaining
importance in the last years, this because of the current interest in programming
concerns, software product lines and big scale software. Different paradigms in-
troduce particular characteristics to the code and new quality attributes to mea-
sure, because of that, new code metrics must be defined in order to measure the
particularities of the source code. If a tool does not allow the incorporation of new
languages, it will impact the support of new paradigms. Next to these limitations,
researchers have identified several related issues with metric tools; these issues
are discussed in Section 3.

Research efforts have been made in order to solve those issues in the form of me-
tric frameworks. These frameworks propose algorithms, techniques and methods for
source code metric extraction in a more generic way, that is, language and metric in-
dependent. A brief description of these frameworks is presented in Section 2. Based
on a metric framework, this paper proposes the construction of a user-oriented tool,
in which the tool will not limit the user by its capabilities, instead, the tool will allow
the user to define the desired metrics and implement new programming languages.
This proposal will be achieved by allowing the user to directly query the source code
based on the language grammar definition.

A shorter version of the work presented here was presented in [30]. This new ver-
sion provides details on the proposed tool architecture, comparison with the current

195CHAPTER # 11 - USER-ORIENTED APPLICATION FOR SOURCE CODE METRICS DEFINITION AND EXTRACTION BASED ON A METRICS FRAMEWORK

tools, as well as further details on the proposed methodology used for the metrics
definition and extraction.

In the following section, related work about the topics discussed here is presented.

2.	 Related work

Software metric tools have been a subject of study for many years. They repre-
sent a research opportunity for many researchers given the difficulty and cha-
llenges they represent, and have been gaining major importance with the current
research interest in new programming paradigms, such as the aspect and feature
oriented programming. Research papers presenting software metric tools, and
the methods used to define and extract the metrics, have been presented over
the years. The tool CKJM presented in [8] is probably one of the most used and
referenced tools in the research community. The tool is able to extracts the Chi-
damber and Kemerer metrics from Java source code. Other research tools found
in the literature are presented in Table 1. These tools are presented as research
efforts and have specific uses. Each tool measures a predefined set of metrics for
source code written in C/C++ or Java.

Table 1. Research tools

Tool Defined in
CCMETRICS Husein and Oxley [9]
CKJM Spinellis [8]
OOMeter Alghamdi et al. [10]
PROM (Pro Metrics) M. Scotto et al. [2], Sillitti et al. [11]
QMOOD++ Bansiya and Davis [12]
TAC++ Fioravanti and Nesi [13]

These tools, along with commercial tools, present the limitations we have been dis-
cussing; they are dependent on the metrics and languages they are built for, and
even if they share a common architecture, each tool works differently. Some tools
use intermediate representations of the source code, databases for storing the ex-
tracted data from the code, and in the case of CKJM, it does not measure directly the
source code, instead it measure Java bytecode. All these different characteristics and
capacities for each tool represent a problem when choosing a tool for code metrics
extraction. For some cases, a single tool will not provide enough characteristics to
fulfill the measurement needs, thus, forcing the necessity of using more than one

196 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

tool for the metrics extraction process. The use, challenges and study of software
metric tools have been reported by authors [14, 15, 16]. These challenges represent a
major problem since software metric tools are essential for any measurement study,
but researchers still do not trust entirely in the technology behind current tools, to the
extent of opting for the development of their own complex and time consuming tools.
These issues are discussed in Section 3.

As mentioned before, metrics frameworks have been developed in order to provide a
functional base for a generic metric extraction process [17, 18, 19, 20, 21, 22, 23]. These
frameworks propose mechanisms for metric extraction and can be classified into two
groups. In the first group, we classify the frameworks that use intermediate represen-
tations of the source code or language grammar for their operations; data structures
such as graphs or trees are usually used for this intermediate representation. In the
second group, we classify the frameworks that use models to define and manipulate a
representation of the source code; these models are usually based on standards such
as the Unified Modeling Language (UML) [24] and the Object Constraint Language (OCL)
[25]. Each group of frameworks provides different mechanisms with certain advanta-
ges and disadvantages; some are easier to use than others, and some, even if they are
trying to achieve generic measurement, are directly linked to a certain programming
paradigm.

Frameworks using UML models for metric definition and extraction are presented in
[17, 20, 21, 22]. These type frameworks are aimed to object-oriented source code and
their overall objective is to construct a UML meta-model of the source code identifying
components and entities of interest, this meta-model is later manipulated via OCL or
any other technique, in order to extract the desired information.

Frameworks based on intermediate representations are presented in [18, 19, 23]. In
[19, 23] an intermediate graph representation of the source code is done, the graph is
then manipulated in order to extract the results. In [18] a tree representation of the
language grammar is presented in which each node can be queried in order to extract
the metrics. This last framework is on ongoing work of the authors of this paper and is
the framework that will be used as part of this work.

A relevant point of consideration is the facilities of use these frameworks can provide.
This is important since we are looking to implement a framework as part of a tool,
so it must provide some mechanism for user interaction. From the frameworks dis-
cussed, three of them [18, 20, 21] present this user interaction in the form of a query
language.

197CHAPTER # 11 - USER-ORIENTED APPLICATION FOR SOURCE CODE METRICS DEFINITION AND EXTRACTION BASED ON A METRICS FRAMEWORK

Based on the framework presented in [18] we propose the characteristics and construc-
tion of a user-oriented metric tool. It is based on the definition and manipulation of a
programming language grammar through queries, which are used to defined and extract
the desired source code metrics.

The structure of the paper is as follows. In Section 3 the overall structure and problema-
tic with current software metric tools are presented. Section 4 presents the proposal of
a user-oriented metric tool. In Section 5 the results and future work are presented, and
we present our conclusions in Section 6.

3.	 Current software metrics tools

Software Metric Tools (SMT’s) are computer programs which aid the process of metric ex-
traction. They are very important since the process of metric extraction is not an easy task,
it is time-consuming, and is a process that might become virtually impossible to do it ma-
nually [7]. The current size of software systems, especially with the growing interest on big
scale software and software product lines, the number or programming languages, and the
number of quality attributes to measure, make the use of automated software metric tools
applications a primary necessity in the software measurement process.

The overall behavior of a metric tool for metric extraction consists on parsing and extrac-
ting a set of metrics for the input source code. For doing that, the tool must implement
and recognize a determined set of programming languages it can parse, along with a set
of metrics it can process and ultimately extract, and because of that, the users of these
tools are often limited by the characteristics of the tool. The purpose of this work is to
provide the characteristics a metric tool should possess in order to be user oriented,
meaning that the user is the one defining metrics and languages, not the tool.

Current software metric tools range from research tools to commercial tools. In Table 1
we provided a brief list of tools presented as research papers, and Table 2 provides a list
of representative commercial tools, the main programming languages they support, and
their website. It is not the objective of this work to present a study or description of the
tools; we are interested in the general problematic these tools present.

3.1	 Common architecture

Metrics tools, especially if commercial, are usually black boxes and present a simple
architecture. The user inputs a set of source code files written in a language the tool
recognizes, along with a selection of metrics the tool provides, and the tool outputs the

198 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

extracted metrics. Little interaction is permitted between the user and the tool, thus li-
miting the user to work with what is already defined, directly affecting the necessities of
a measurement project.

Table 2. Commercial tools

Tool Languages Website
Understand C, C++, C#, Java https://scitools.com/
Krakatau Professional C++, Java http://www.powersoftware.com
JHawk Java http://www.virtualmachinery.com
McCabeIQ C#, C++.NET, C++, JAVA, VB.NET http://www.mccabe.com
Resource Standard Metrics C++, C#, Java http://msquaredtechnologies.com/
SDMetrics From UML http://www.sdmetrics.com/

3.2	 Tools problematic

Many authors have pointed out issues with software metric tools. These are not minor
problems and truly affect the measurement process. The following issues comprise and
summarize the major issues found with metric tools:

1.	 Tools are dependent on the set of metrics and languages they accept [18, 19,
26]. This is especially important since every project has their measurement
needs and source code can be written in different programing languages. In
addition, new metrics and programming languages can be proposed, or modi-
fications can be made to the existing ones. This is a very important issue since
it restricts the measurement needs of a particular study; especially for those
exploring not widely used metrics, or those proposing new metrics.

2.	 Tools cannot be extended to accept new metrics or languages [18, 19, 22, 27].
Current metric tools do not usually provide mechanisms, or easy mechanisms,
that could allow the user to escalate the tool’s definitions; the user is left with
the original functionality of the tool. Tools like Understand and JHawk allow
the definition of new metrics from the already predefined data extracted from
the source code, but no real new metrics definitions are accepted, only modi-
fications to existing ones.

3.	 Different and inconsistent results across tools [13, 16, 18, 22, 26, 28]. In [28] a
study is made in which the authors compare the results for the same metric
obtained in different tools and conclude that the results are different. Each
tool can provide a different interpretation and consequently a different imple-

199CHAPTER # 11 - USER-ORIENTED APPLICATION FOR SOURCE CODE METRICS DEFINITION AND EXTRACTION BASED ON A METRICS FRAMEWORK

mentation of each metric, this according to the understating and knowledge
of the developers of the tool. This represents a major issue since metrics em-
pirical studies cannot be easily reproduced by researchers if different results
are obtained according to the tool.

4.	 Updates of the tool must be made according to languages changes [14, 29].
Even though languages changes are not frequent, these changes usually re-
present major improvements in the language, including new characteristics
and syntax that are not recognized by default by the tool. In fact, since syntax
parsers are a key component in metrics tools, newer source files provided by
the user might not be recognized at all by the parser. Also, dialects for major
programming languages exist whose code might not be recognized by a cer-
tain tool.

Another issue is that they are not free of cost, which even if it is not a technological re-
lated issue, the cost might represent a major factor when choosing a tool. Even though
most of the commercial tools provide a demo or trial version, the restrictions these ver-
sions contain impact the tool functionality to the point of not being entirely useful for a
measurement project. Research tools might not present a viable solution for replacing
commercial tools, and therefore eliminating the cost issue, since they are presented for
specific goals, have limited availability and are not updated.

4.	 User oriented metric tool

We propose the characteristics and construction of a user-oriented metric tool, in which
the main purpose is to allow the user to define metrics and languages.

4.1	 Architecture

A similar architecture to the one defined in Section 3.1 is proposed for this tool. The main
difference is that the black box is substituted by a framework and the user can define
metrics and languages which will be processed by the framework. This will allow the user
to provide the metrics and languages definitions as an input to the tool.

It is important to indicate the differences between a common metric tool and a user-
oriented tool. Fig. 1 depicts the architecture of common software metrics tools, and as
it can be observed, it is usually common to have a parser for each programming lan-
guage accepted by the tool, with metrics usually being defined and computed by means
of these parsers. This type of architecture is complex and hard to maintain and modify.

200 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Some tools try to simplify and reduce the complexity by providing an intermediate re-
presentation of the source code that is common across languages as depicted in Figure
2. Therefore, instead of defining the metrics on the parsers, they are defined and com-
puted by means of an intermediate representation of the source code. This intermediate
representation is achieved by creating common structures such as graphs or trees, or by
using standard formats such as XML. Even though using intermediate representations
allows more flexibility, and modifications to the tool are easier (all languages recognize
a metric modification), there is still a need of individual parsers in order to create those
representations.

Figure 1. Common metrics tool architecture

Figure 2. Common metrics tool architecture (simplified)

The user oriented tool architecture is depicted in Figure 3. The first goal, and main
difference from the common tools, is the absence of parsers and intermediate re-
presentations. Intermediate representations are a good option for providing a com-
mon platform when processing different languages, but their use might add a layer of
complexity. On the other hand, individual parsers are removed and all the language
processing is then delegated to a framework with mechanisms for language proces-
sing and metrics extraction. The framework will allow the individual working with the
tool to provide a programming language grammar as an input, as well as the metrics
definitions he wants to extract. User defined languages and metrics is a characteristic
that is not easily achieved by a common architecture, this is because a parser must be
provided in order to accept the language, and the metrics are sometimes hard coded
in the parser or tool code.

201CHAPTER # 11 - USER-ORIENTED APPLICATION FOR SOURCE CODE METRICS DEFINITION AND EXTRACTION BASED ON A METRICS FRAMEWORK

Figure 3. User-oriented tool architecture

4.2	 Implementation

The main goal for the implementation of a tool as proposed here lies entirely in the fra-
mework or methodology that could provide a generic metric extraction. In Section 2, we
described frameworks that have been proposed in order to achieve that, but might not
be entirely useful as a metrics tool base. For this purpose, we have been developing a
methodology which will serve as the base for a user-oriented software metric tool. A pre-
liminary report and results of this methodology have already been published in [18]. Next,
we describe the methodology as implemented in the construction of the tool.

The methodology aims to obtain a set of arranged substrings from the source code re-
gardless of the programming language the source code is written. These substrings are
processed in a way that will have a meaning to the user. This process will be achieved,
by allowing the user to query the source code directly and the results of those queries
will be the set of aforementioned substrings.

The starting point of the methodology is the definition of the language. A programming
language is usually defined by a context free grammar, which defines the syntactical and
lexical structure of the language. From the grammar, an intermediate tree type represen-
tation of the grammar is created, and we call this representation a Path Tree. From this
representation the queries can be performed and the results obtained.

A Path Tree is an intermediate tree representation of the language grammar which could
be compared to an abstract syntax tree (AST), but with major differences. The path tree
is created statically as a pre-processing step, unlike the AST that is created at derivation
time. The path tree is created in order to obtain a more manageable representation of
the grammar to be queried and store the results. Given the nature of the grammar itself,
recursion and ambiguity in the creation of the tree represent two problems to solve.
Recursion is presented in a production of the type , which would create infinite loops in
the parent-children relations, and ambiguity is presented when there is more than one

202 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

way from which a terminal can be derived. In order to prevent that, we define the way in
which the tree must be created.

The nodes of the tree are created from the non-terminals symbols of the grammar and
will define all valid paths that can be queried. Each node is labeled with a non-terminal
symbol following the next rules from [18]:

•• The root node of the tree is labeled with the symbol found on the left side of the
initial production.

•• For each node N labeled with the symbol S is due to meet to:

»» The labels of child nodes of N may not be repeated and are different from S.
»» In the branch that is built from node N, node N can only be labeled with the

symbol S.

•• Valid paths are those that are formed from a top - down tour from any node to any
other node. If the paths begin to form from the root of the tree (which is the start
symbol by rule 1) does not get any ambiguous path.

When the actual parsing of the source code happens, every node (non-terminal) of the
tree will be filled with their corresponding lexical values (tokens). For more information
on this topic, please refer to [18].

From this point, we need to allow the user to query this tree. This is important since it
provides the interaction and user metric definition we are looking for. From the tree,
each non-terminal can be queried so the user will have to simply input the name of the
non-terminal to query. As mentioned above ambiguity can be presented since a non-
terminal can be derived from different paths, so for a more generalized representation,
we are going to define a query from the tree root to the desired node. We are going to
use the symbol “!” in order to denote parent-children relationships. As an example, we
provide the following grammar:

LC→C
LC→C LC
C→MOD(_^')class^' ID '{^' '}'
MOD→'public' |(_^')private^'
ID→identifier

From the grammar, the following tree is created:

203CHAPTER # 11 - USER-ORIENTED APPLICATION FOR SOURCE CODE METRICS DEFINITION AND EXTRACTION BASED ON A METRICS FRAMEWORK

The language defined by the grammar accepts the following code fragment:

public class MyClass {}
private class MyOtherClass {}

The lexical values obtained in the parsing process are saved in the corresponding tree
node (non-terminal). Table 3 shows each node and their corresponding values.

Table 3. Node values

Non-terminal Values
LC public class MyClass {} private class MyClass {}

C public class MyClass {}
public class MyOtherClass {}

MOD public
private

ID MyClass
MyOtherClass

Now we can create the queries from the tree. Table 4 presents two queries and the
results.

Table 4. Queries Examples

Query Meaning Lexical result Numeric result

LC!C!ID Classes in the code MyClass
MyOtherClass 2

LC!C!MOD Modifiers used in the code Public
Private 2

Querying single non-terminals provide good information and allow the extraction of
common count metrics, such as “number of classes” defined in Table 4, but we also need
to provide a level of specialization by linking results. Specialization is a common charac-
teristic in code metrics which allows defining a metric with a certain scope, for example

204 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

the metrics “number of methods” or “number of attributes” are defined in the scope of
a class. As an example, we present the following grammar which allows the declaration
of classes with member variables:

LC→C
LC→C LC
C→MOD(_^')class^' ID '{^' VARS '}'
MOD→'public' |(_^')private^'
ID→identifier
VARS→VARDEC VARS | VARDEC
VARDEC→MOD(_^')int^' ID

The language defined by the grammar accepts the following code fragment:

public class MyClass
{
 public int var1, var2
 private int var3
}
private class MyOtherClass
{
 public int var4, var5
}

Given the grammar of the language and the code, we can query the terminals. For this
example, we want to query the metric “number of attributes”, which extracts the member
variables for each class. Table 5 presents the queries needed for the metric.

Table 5. Single queries

Query Meaning Lexical result

LC!C!ID Classes MyClass
MyOtherClass

LC!C!VARS!VARDEC!ID Member variables

var1
var2
var3
var4
var5

Each query provides the necessary lexical values needed by the metric, but they are
provided as different results sets. We need to link both queries in order to get a single

205CHAPTER # 11 - USER-ORIENTED APPLICATION FOR SOURCE CODE METRICS DEFINITION AND EXTRACTION BASED ON A METRICS FRAMEWORK

result. For that, we merge the queries by linking them with a given operator; we use the
symbol ‘&’ for this purpose. By linking the queries in Table 5 we get the query: LC!C!ID
& LC!C!VARS!VARDEC!ID. The lexical values are also merged in order to get the result as
presented in Table 6.

Table 6. Query merged result

LC!C!ID result LC!C!VARS!VARDEC!ID result
MyClass var1

var2
var3

MyOtherClass var4
var5

As mentioned above, the lexical values are merged and accommodated according
to their real character positions in the source code.

4.3	 Results of user interaction through queries and
grammars

In this section we provide a summary of the results obtained by applying the pro-
posed methodology in the construction of a user metrics oriented tool. As we are
looking for a complete user interaction with the tool, the proposed framework is
aimed to achieve that. Since the functioning of the framework is based on the lan-
guage grammar, the user can provide any grammar to the tool and the functionality
will remain the same, and thanks to that, the tool is not limited by the languages
it was developed for.

Since the framework works by querying the grammar representation, those queries
can be performed by the user and each query will represent a well-known metric,
or any other measure the user would like to extract. By allowing the user to define
the measures through queries, the tool is no limited by the set of metrics that it
can extract.

We have tested our methodology measuring C# and Java code. We defined and
generated a variety of metrics, including well-known metrics such as number of
classes, methods per class, member variables, data types used, fan-in, cyclomatic
complexity, etc. Next, we present a brief list of metrics we are able to extract trough
queries:

206 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

•• Namespaces used in each class

•• Number/name of classes

•• FanIn/FanOut

•• Cyclomatic complexity

•• Number of language instruction (vocabulary, conditions, cycles, enumerations, ex-
ceptions, etc.)

•• Per class:

»» Public, private and protected member variables.
»» Public, private and protected methods.
»» Parent classes.
»» Interface complexity (parameters + return points).
»» Class complexity (cyclomatic complexity + interface complexity).
»» Data types.

Most of the listed metrics can also be extracted depending on the desired scope accor-
ding to the programming language (namespace, package, class, method, etc.). The results
are obtained from a simple application we built based on the proposed methodology.
The application allows the user to input the queries from the defined grammar and a set
of source files, and outputs the results in plain text or XML format.

The results obtained so far are promising and will allow us to build a complete overall
user oriented application. This type of application can provide two layers of use depen-
ding on the user expertise. In one layer, the application itself will contain predefined
metrics and programming languages from which any user can easily choose from, and
in the other layer, advanced users will be able to define new metrics and incorporate
new programming languages to the tool. Metrics tools for source code measurement are
essential for the overall software measurement process, and a tool like the one pro-
posed here, will be of great help for researchers and practitioners, especially for those
researchers working on the definition and validation of new metrics not supported by
current tools, since the time and effort required to conduct a metrics research study can
be greatly decreased if no additional tools or analyzers have to be built as part of the
research process.

5.	 Future work

The creation and correct functioning of a tool like the one we propose depends heavily on
the framework and the interaction with the user. Using queries for user input is fundamen-

207CHAPTER # 11 - USER-ORIENTED APPLICATION FOR SOURCE CODE METRICS DEFINITION AND EXTRACTION BASED ON A METRICS FRAMEWORK

tal for the type of user interaction we are looking to achieve, and further work must be done
in order to formally define a complete query language based on those queries. The query
language will provide metrics relations, mathematical operations, conditions, etc.

This query language will allow us to extract metrics which require additional processing,
for example, the metric number of comments per method requires the computation of
two metrics. The framework itself is well suited for extracting the metrics, but aided by
the query language we will be able to calculate the desired relation. This language will
not require the framework to be modified because it only requires a post-processing of
the results.

It is also important to mention that, both the framework and the query language, must
be programming language independent, and more importantly, programming paradigm
independent. This is important since we are looking for a generic extraction mechanism,
and limiting the paradigm will in turn limit the languages and code metrics that can be
accepted. Each paradigm accounts for several different code entities that can be mea-
sured, for object oriented programing for example, classes and methods related metrics
can be extracted, and for aspect oriented programming, aspects, pointcuts and concerns
related metrics can be extracted. Moreover, current systems can be written in any com-
bination or programming paradigms.

The application built upon the methods proposed in this paper, must provide all the
necessary elements for the intended user interaction in the source code metrics extrac-
tion process.

6.	 Conclusions

Automated tools for metric extraction are very important and a necessity for the soft-
ware measurement process, without these tools, the metrics extraction process could
become an almost impossible task. Even though these tools play a major role, they pre-
sent a set of issues that cannot be ignored, especially the fact that are limited in the set
of metrics and programming languages they recognize. This is a major issue since a tool
can be of no use if the language or metric the user wants to measure is not supported.
The user could use more than one tool in order to achieve his measurements goals, but
it is not an efficient or convenient approach, besides, these tools are not free of cost,
making the use of several tools a difficult task.

Next to those issues, new programming paradigms are gaining importance in current
research, such as the aspect oriented and feature oriented paradigms, and research on

208 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

other paradigms, such as the procedural paradigm, has stalled. These changes drasti-
cally affect the validity of certain tools and the value they can provide to practitioners
and researchers. More importantly, each paradigm accounts for different source code
attributes, entities, and relations between them that must be measured in order achieve
the desired software quality.

In this paper, we propose a user oriented metrics tool in which the user is allowed to
define metrics and incorporate programming languages to the tool according to his ne-
cessities, effectively eliminating the limitations the current software metrics tools pre-
sent. It is not an easy task and depends heavily on the framework or methodology that
could provide the needed mechanisms in order to achieve a generic metric extraction.
By providing such a tool, the complexity of the source code measurement can be greatly
reduced as well as the limits imposed by current tools.

7.	 References

[1]	 IEEE Std 610.12-1990, IEEE standard glossary of software engineering terminology.
https://standards.ieee.org/findstds/standard/610.12-1990.html

[2]	 M. Scotto, A. Sillitti, G. Succi, and T. Vernazza, “A non-invasive approach to product
metrics collection,” J. Syst. Archit., vol. 52, pp. 668–675, 2006.

[3]	 T. J. Mccabe, “A Complexity Measure,” IEEE Trans. Softw. Eng., no. 4, pp. 308–320, 1976.
[4]	 M. H. Halstead, Elements of Software Science. New York, NY, USA: Elsevier Science

Inc., 1997.
[5]	 S. Chidamber and C. F. Kemerer, “A metrics suite for object oriented design,” IEEE

Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493, 1994.
[6]	 F. e Abreu, “Design Metrics for Object-Oriented Software Systems,” Work. Quant.

Methods Object-Oriented Syst. Dev., no. August, 2005.
[7]	 L. Etzkorn and H. Delugach, “Towards a semantic metrics suite for object-oriented

design,” Proceedings. 34th Int. Conf. Technol. Object-Oriented Lang. Syst. - TOOLS 34,
pp. 71–80, 2000.

[8]	 D. Spinellis, “Tool Writing: A Forgotten Art?,” IEEE Softw., vol. 22, no. 4, pp. 9–11, 2005.
[9]	 S. Husein and A. Oxley, “A Coupling and Cohesion Metrics Suite for Object-Oriented

Software,” 2009 Int. Conf. Comput. Technol. Dev., pp. 421–425, 2009.
[10]	 J. Alghamdi, R. a Rufai, and S. M. Khan, “OOMeter: A Software Quality Assurance Tool,”

Ninth Eur. Conf. Softw. Maint. Reengineering, pp. 190–191, 2005.
[11]	 A. Sillitti, A. Janes, G. Succi, and T. Vernazza, “Collecting, integrating and analyzing

software metrics and personal software process data,” Conf. Proc. EUROMICRO, pp.
336–342, 2003.

209CHAPTER # 11 - USER-ORIENTED APPLICATION FOR SOURCE CODE METRICS DEFINITION AND EXTRACTION BASED ON A METRICS FRAMEWORK

[12]	 J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented design quality
assessment,” IEEE Trans. Softw. Eng., vol. 28, no. 1, pp. 4–17, 2002.

[13]	 F. Fioravanti and P. Nesi, “Method and tool for assessing object-oriented projects
and metrics management,” J. Syst. Softw., vol. 53, no. 2, pp. 111–136, 2000.

[14]	 A. Sillitti, G. Succi, and S. De Panfilis, “Managing non-invasive measurement tools,” J.
Syst. Archit., vol. 52, no. 11, pp. 676–683, 2006.

[15]	 I. D. Coman, A. Sillitti, and G. Succi, “A case-study on using an Automated In-process
Software Engineering Measurement and Analysis system in an industrial environ-
ment,” 2009 IEEE 31st Int. Conf. Softw. Eng., pp. 89–99, 2009.

[16]	 P. Emanuelsson and U. Nilsson, “A Comparative Study of Industrial Static Analysis
Tools,” Electron. Notes Theor. Comput. Sci., vol. 217, no. C, pp. 5–21, 2008.

[17]	 A. L. Baroni and F. B. e Abreu, “A Formal Library for Aiding Metrics Extraction,” Int.
Work. Object-Oriented Re-Engineering, 2003.

[18]	 A. Núñez-Varela, H. G. Perez-Gonzalez, J. C. Cuevas-Tello, and C. Soubervielle-Montal-
vo, “A Methodology for Obtaining Universal Software Code Metrics,” Procedia Tech-
nol., vol. 7, no. 0, pp. 336–343, 2013.

[19]	 B. Cogan, “A Generalized Structural Model of Structured Programs for Software Me-
trics Definition,” Softw. Qual. J., pp. 149–167, 2002.

[20]	 C. Marinescu, R. Marinescu, and T. Girba, “Towards a simplified implementation of
object-oriented design metrics,” 11th IEEE Int. Softw. Metrics Symp. METRICS05, no.
Section 6, p. 11 TS – CrossRef, 2005.

[21]	 E. H. Alikacem and H. A. Sahraoui, “Generic Metric Extraction Framework,” in IWSM/
MetriKon 2006, 2006.

[22]	 E. H. Alikacem and H. a. Sahraoui, “A Metric Extraction Framework Based on a High-
Level Description Language,” 2009 Ninth IEEE Int. Work. Conf. Source Code Anal. Ma-
nip., pp. 159–167, 2009.

[23]	 S. Allier, S. Vaucher, B. Dufour, and H. Sahraoui, “Deriving coupling metrics from call
graphs,” Proc. - 10th IEEE Int. Work. Conf. Source Code Anal. Manip. SCAM 2010, pp.
43–52, 2010.

[24]	 Unified Modeling Language. http://www.uml.org/
[25]	 Object Constraint Language - Object Management Group. http://www.omg.org/

spec/OCL
[26]	 Z. Budimac, G. Rakic, M. Hericko, and C. Gerlec, “Towards the Better Software Metrics

Tool,” 2012 16th Eur. Conf. Softw. Maint. Reengineering, pp. 491–494, 2012.
[27]	 D. P. Darcy and C. F. Kemerer, “OO Metrics in Practice,” IEEE Softw., vol. 22, no. 6, pp.

17–19, 2005.
[28]	 R. Lincke, J. Lundberg, and W. Löwe, “Comparing software metrics tools,” Proc. 2008

Int. Symp. Softw. Test. Anal. - ISSTA ’08, p. 131, 2008.

210 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

[29]	 M. Scotto, A. Sillitti, G. Succi, and T. Vernazza, “A relational approach to software me-
trics,” Proc. 2004 ACM Symp. Appl. Comput. SAC 04, p. 1536, 2004.

[30]	 Núñez-Varela, A. S., Pérez-González, H. G., Martínez-Pérez, F. E., & Cuevas-Tello, J.
(2016). Building a user oriented application for generic source code metrics extrac-
tion from a metrics framework. In 2016 4th International Conference in Software
Engineering Research and Innovation. http://doi.org/10.1109/CONISOFT.2016.13

211

Chapter # 12
PMBOK and Essence:

Partners for IoT Projects

1.	 Introduction

Internet of Things (IoT) is a concept that has several components, such as techno-
logy, human factors, business process, and engineering standards [1, 2, 3, and 4].
Model based system engineering build models that allows the identification of the
engineering activities that are present in system life cycle; furthermore, engineers
use systems models to understand problems, develop candidate solutions, and va-
lidate their decisions [5].

Systems models allow the identification of risks and obstacles to solutions imple-
mentation. They represent both the desire outcome of the design process and what
the system will look like [6].

To be successful, companies that takes part of the IoT ecosystem must be able to
respond quickly to the changing demands of both stakeholders and technology, and
must have appropriate levels of engineering discipline [7]. Moreover, there is an in-
trinsic complexity in IoT systems, as there are very simple software running on basic
sensors and other simple devices, and, at the same time, there are the dependabi-
lity issues of the components needed to process, analyze and respond to the vast
amounts of data that are produced.

IoT systems development need to use many methods and practices to deal with
its complexity, however, these methods and practices need a common ground ba-

Marcel J. Simonette
Escola Politécnica
Universidade de São
Paulo São Paulo, Brazil
marceljs@usp.br

Mário E. S. Magalhães
CEST
Universidade de São
Paulo
São Paulo, Brazil
m.e.magalhaes@ieee.org

Edison Spina
Escola Politécnica
Universidade de São
Paulo
São Paulo, Brazil
spina@usp.br

212 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

sed on project management body of knowledge and the systems and software
engineering. The successful implementation of IoT systems requires not only
engineers’ technical skills but managerial traits as well. The combination of
technical skills and management principles allow systems engineers address
both the technical and managerial issues that are present in IoT systems life
cycle [8, 9, 10].

The authors` research concerns the relationship between PMBOK process and
Essence Kernel activity spaces, which allows the consideration of the project
management body of knowledge in IoT development endeavors [11]. In addi-
tion, the author use the BRISCS Mosaic Model as a systems model to identify
barriers that must be consider in IoT systems and software.

2.	 Brics mosaic model

To model IoT systems it is necessary to develop a context-aware socio-techni-
cal model, which allows the representation of the knowledge diversity present
in system context and stakeholders objectives [12, 13, 14, and 15].

Based both on concept plans of Next Generation Networks (NGN) [16], and on
the results and experience of two projects of the 7th Framework Programme for
Research and Technological Development (FP7): CSA for Global RFID-related Ac-
tivities and Standardization (CASAGRAS2) [17], and Internet of Things Architec-
ture (IoT-A) [18], the BRICS Mosaic Model represents the engineering and non-
engineering aspects required for IoT systems. The Model provides a context for
a representative concept that organizes the characteristics of the IoT universe
into planes of a cylindrical mosaic, which are represented in Figure 1. Each
plane of the cylindrical model of the Mosaic allows the identification of a re-
search area for IoT. That is the reason why it is named as BRICS, an acronym to:
Building blocks of Research for the Internet-Connected objects. BRICS Mosaic
planes represent solution views, and are considered “planes of functionality”.
The first plane (Figure 1) represents the Technological view, and the other pla-
nes are representation of: Security, Business Process, Integrated Management
and Control, Regulations, and Human Factors. If any other view is identified in
an IoT solution, it may be another plane in Mosaic.

213CHAPTER # 12 - PMBOK AND ESSENCE: PARTNERS FOR IOT PROJECTS

Figure 1. BRICS MOSAIC Model

Each plane has the same set of dimensions that drive, influence and affect the de-
velopment of IoT systems (Figure 2). No single plane, and no single dimension of a
plane, can yield a satisfactory model for an IoT system.

Figura 2: Feasibility Barrier Factors

214 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

The set of dimensions are the Feasibility Factors (FF). Each FF is a barrier, a
restriction to be overcome. All the planes of functionality in BRICS Mosaic Mo-
del have the same set of FF, and each Factor in each plane is represented as
the zone between two concentric circles in this plane. Furthermore, each zone
represents a different medium in which information is carried over. The con-
centric circles in each plane represent the fact that data can transit from any
point to any other point. Furthermore, there are different software systems in
each of these dimensions. Reference [19] presents a full example of the use of
BRICS Mosaic Model and FF.

3.	 Essence

Although there are several methods and practices to conduct the software
development process, there is a set of essentials elements and actives that
are universal and present in all software systems projects. These elements
and activities deal with “things we always work with” (Figure 2) and “things we
always do” (Figure 3) in a software system project [20]. These elements provide
an integrated set of universal elements that are present in software systems
development projects, enabling to measure progress and health of software
projects. Furthermore, the set of essential elements facilitates the communi-
cation and the identification of the actions to be taken throughout a project
lifecycle [20, 21].

Essence Kernel was first published in the Software Engineering Method and
Theory (SEMAT) submission to respond to the Object Management Group (OMG)
call: “Foundation for Agile Creation and Enactment of Software Engineering”
[22]; actually, Essence Kernel and Language is an OMG standard [23]. More than
a conceptual model, the kernel provides:

A framework for project teams to reflect on the progresses of an endeavor and
the state of their efforts.

A common ground to discuss, to improve, to compare, and to share the Soft-
ware Engineering best practices and methods.

215CHAPTER # 12 - PMBOK AND ESSENCE: PARTNERS FOR IOT PROJECTS

Figure 2. “Things we always do”

•• A framework for project teams to assemble practices to assemble practices from
different origins to continuously improve the way of working.

•• A framework for defining metrics that are improve the independent of practices, to
evaluate both of the development software and the methods used to develop it.

216 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

•• A way to help project teams to understand (i) their present scenario, (ii)
what they should do to advance in the project process, and (iii) which
practices of the process they need to improve.

Essence Kernel is organized into three specific dimensions of software deve-
lopment: Customer, Solution, and Endeavor. They are the areas of concern of
the standard [21]. Each of these areas of concern has a set of activity spaces,
which are a representation of essential things that have to be done to develop
software systems. Activity Spaces aims to establish the way to a successful
software engineering endeavor. Figure 2 represents these activity spaces for
the three areas of concern.

4.	 PMBOK process groups

The PMBOK - Project Management Body of Knowledge - represents the results
of a global effort to support and to recognize the application of knowledge,
processes, skills, tools, and techniques to have a significant impact on project
success. It recognizes ten areas of project knowledge management, the double
nature of project process and five groups of project management processes.

The project knowledge areas are [24]: (i) Project Integration Management, (ii)
Project Scope Management, (iii) Project Time Management, (iv) Project Cost
Management, (v) Project Quality Management, (vi) Project Human Resource
Management, (vii) Project Communications Management, (viii) Project Risk Ma-
nagement, (ix) Project Procurement Management and (x) Project Stakeholder
Management.

The double nature of project processes regards (i) Project management pro-
cesses and (ii) Product-oriented processes. Even though the PMBOK Guide
recognizes the interaction and overlap between these two groups, it describes
only project management processes.

The project management processes are described by their purposes, interac-
tions, and integrations. They are grouped into five categories, known as Pro-
ject Management Process Group, or simply as Process Group [24]:

•• Initiating Process Group.

217CHAPTER # 12 - PMBOK AND ESSENCE: PARTNERS FOR IOT PROJECTS

•• Planning Process Group.

•• Executing Process Group.

•• Monitoring and controlling Process Group.

•• Closing Process Group.

5.	 Essence and PMBOK

A comparison context considering the Activity Spaces of Essence Standard and the
PMBOK Process Groups and Knowledge Areas has been presented by the authors in
[11]. Tables 1, 2, and 3, from [11], describe the PMBOK Management Processes pre-
sent in each Essence Activity Spaces. The five PMBOK Process Groups are represen-
ted by a different color pattern:

! Initiating Process Group

! Panning Process Group

! Monitoring and Controlling Process Group

! Executing Process Group

! Closing Process Group

Table 1 indicates that in the Customer area of concern, the project chart is deve-
loped, the risks and the stakeholders are identified, the project scope is validated
and the project is closed.

Table 2 presents the PMBOK Management Processes that are present in Solution
Activity Spaces.

As expected, most PMBOK Management Processes

(74%) are present in the Endeavor Activity Spaces (Table 3). In the Endeavor area
of concern, it is necessary to effectively plan, lead, and monitor the efforts of the
team. The activity spaces in this area: cover the formation and support of the

218 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

team implementing de software system, in addition to planning and the coordi-
nating of the work.

6.	 IOT Projects

IoT projects has a complexity that demands new domain-specific practices. Ja-
cobson at al. [7] suggest the need of practices that handle with dependability
issues, such as:

•• Practices to deal with reliability and availability of distributed software
systems.

•• Practices to develop mobile systems that must deal with availability, secu-
rity and safety of software systems.

•• Practices to deal with the whole idea of IoT, which is to sense-analyze-
activate without a human in the loop.

In spite of the fact that it is necessary a new set of practices do deal with IoT
issues, the authors agree with Jacobson et al.[7] that new management practi-
ces is not necessary, especially to the Industrial IoT, which usually makes use of
PMBOK to manage its projects.

7.	 Conclusion and future work

No method is perfect, and finding perfect partners is almost impossible. Howe-
ver, it is possible for different methods to complement each other, and the map-
ping of the PMBOK Process Groups in the Essence Activity Spaces represents this
complementary relationship.

The mapping represented in Tables 1, 2, and 3 allows project managers and
the software development team to go beyond the inputs and outputs of each
Activity Space in terms of the alphas states of Essence Kernel. It allows identi-
fying which Project Management processes should be considerer in each Activity
Space.

219CHAPTER # 12 - PMBOK AND ESSENCE: PARTNERS FOR IOT PROJECTS

Table 1. Customer activity space, pmbok management process and knowledge areas mapping

Table 2: Solution activity space, pmbok management process and knowledge areas mapping

220 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Table 3. Endeavor activity space, pmbok management process and knowledge areas mapping

The BRICS Mosaic Model, and its FF, allows the identification of the barriers, the restric-
tion to be overcome in each technological view of a IoT systems. Identifying barriers in
IoT projects is the first step to select the set practices to overcome it. However, these
practices must not be combined in different isolated methods, without a widely accep-
ted common ground [7].

To deal with the software development practices necessary to overcome the barriers
in IoT projects, Essence kernel, part of the OMG stander Essence [23], can provides a
foundation, the common ground, that allows the assembly of a comprehensive practice
library containing the practices needed for the IoT systems domain [7].

221CHAPTER # 12 - PMBOK AND ESSENCE: PARTNERS FOR IOT PROJECTS

Essence Kernel also allows the definition of lifecycle apart form the set of practices used
by the development team. It is a importante feature in a complex domain as IoT projects,
which demands a kind of governance that needs to capture checkpoints and manage
several life cycles, not constraining them to any pre-defined type of style of software
development process.

IoT systems project success depends on management. In other words, IoT projects may
fail because management may assume that these projects are “just another project”.
IoT systems complexity demands management and engineering discipline. BRICS Mo-
saic Model allows the identification of the barriers that must be overcome. Essence
kernel provides the common ground to the set of practices to deal with these barriers.
The identified relations among PMBOK Project Management Knowledge Areas, Processes
Groups, and Essence Activity Spaces allows the management of the complexity in soft-
ware engineering IoT projects endeavors.

8.	 Acknowledgment

This work was partly supported by the Society and Technology Study Center (or, CEST –
Centro de Estudos Sociedade e Tecnologia, in Portuguese) at Universidade de São Paulo.

9.	 References

[1]	 Gerd Kortuem, Arosha K. Bandara, Neil Smith, Mike Richards, Marian Petre, “Educa-
ting the Internet-of-Things Generation,” Computer, vol. 46, no. 2, pp. 53-61, Feb., 2013

[2]	 Mohamed Ali Feki, Fahim Kawsar, Mathieu Boussard, Lieven Trappeniers, “The Inter-
net of Things: The Next Technological Revolution,” Computer, vol. 46, no. 2, pp. 24-25,
Feb., 2013

[3]	 D. Roggen, Gerhard Troster, P. Lukowicz, A. Ferscha, Jose del R. Millan, R. Chavarriaga,
“Opportunistic human activity and context recognition,” Computer, vol. 46, no. 2, pp.
36-45, Feb., 2013

[4]	 G. Schwartz, E. Spina, J.R.A. Amazonas, “Internet of the Future NonEngineering Cha-
llenges”. In: The 3rd International MultiConference on Engineering and Technologi-
cal Innovation Proceedings. Winter Garden, FL: IIIS International Institute of Infor-
matics and Systems, 2010. v. 1. p. 146-151.

[5]	 Loyd Baker, Paul Clemente, Bob Cohen, Larry Permenter, Byron Purves, and Pete Sal-
mon, Foundational Concepts for Model Driven System Design. INCOSE International
Symposium, Vol.6, No.1, Jul. 1996, pp.1179-1185. DOI:10.1002/j.2334-5837. 1996.tb02139.x

222 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

[6]	 Chris Piaszczyk, Model Based Systems Engineering with the Department of Defen-
se Architectural Framework, Systems Engineering, vol.: 14, no.: 3, pp.: 305-326. DOI:
10.1002/sys.20180

[7]	 I. Jacobson, I. Spence, P. W. Ng. Is There a Single Method for the Internet of Thing?
Ivar Jacobson International white paper. Available at: https://www.ivarjacobson.
com/publications/white-papers/ industrial-internet-needs-many-methods

[8]	 Alexander Kossiakoff, Willian N. Sweet, Samuel J. Seymour, Steven M. Biemer, Sys-
tems Engineering Principles and Practice, 2nd Edition, John Wiley & Sons, Inc., Ho-
boken, New Jersey, 2011.

[9]	 Amira Sharon, Olivier L. de Weck, and Dov Dori. Project management vs. systems en-
gineering management: A practitioners’ view on integrating the project and product
domains. Systems Engineering, Vol.14, No.4, 2011, pp. 427-440. DOI=10.1002/sys.20187

[10]	 Andrew P. Sage, Systems engineering: Fundamental limits and future prospects. Pro-
ceedings of the IEEE, vol.69, no.2, pp.158-166, Feb. 1981. DOI=10.1109/PROC.1981.11948

[11]	 M. J. Simonette, M. E. S. Magalhães and E. Spina, “PMBOK Five Process Groups and
Essence Standard: Perfect Partners?” 2016 4th International Conference in Soft-
ware Engineering Research and Innovation (CONISOFT), Puebla, 2016, pp. 53-58. DOI:
10.1109/CONISOFT.2016.17

[12]	 Anind K. Dey, Gregory D. Abowd, and Daniel Salber, a conceptual framework and
a toolkit for supporting the rapid prototyping of context-aware applications. Hu-
man-Computer Interaction, Vol.16, No. 2, Dec. 2 0 0 1 p p. 97 - 166. DOI =10.1207/
S15327051HCI16234_02

[13]	 Gerhard Fischer, User Modeling in Human–Computer Interaction. User Mo-
deling and User-Adapted Interaction, Vo.11, No.1-2, Mar. 2001, pp.65-86.
DOI=10.1023/A:1011145532042

[14]	 Stefan Carmien, Melissa Dawe, Gerhard Fischer, Andrew Gorman, Anja Kintsch, and
James F. Sullivan, Socio-technical environments supporting people with cognitive
disabilities using public transportation. ACM Transaction on Computer-Human In-
teraction, Vol. 12, No. 2, Jun. 2005, pp. 233-262. DOI=10.1145/1067860.1067865

[15]	 Zoran Bojkovic, Bojan Bakmaz, Miograd Bakmaz, Some Challenging Issues for In-
ternet of Things Realization. Proc. 12th International Conference on Data Networks,
Communications, Computers (DNCOCO ‘13), Lemesos, Cyprus, Mar. 2013, pp. 63-70.
WSEAS Press, ISBN:978-1-61804-169-2, ISSN: 1790-51117. Available at: http://www.
wseas.us/e-library/conferences/2013/Lemesos/TELSYS/TELSYS-08.pdf

[16]	 ITU-T Y.2011, Next Generation Networks - Frameworks and functional architecture
models, General principles and general reference model for Next Generation Net-
works, 10/2004.

[17]	 CASAGRAS2 - CSA for Global RFID-related Activities and Standardization. Project we-
bsite available at: (http:// cordis.europa.eu/projects/rcn/85786_en.html).

223CHAPTER # 12 - PMBOK AND ESSENCE: PARTNERS FOR IOT PROJECTS

[18]	 IoT-A – Internet of Things Architecture. Project website available at: (http://cordis.
europa.eu/projects/rcn/95713_en.html)

[19]	 M. J. Simonette, R. Filev, D. Gabos, J. R. Amazonas, E. Spina. BRICS Mosaic Model for
IoT Feasibility Barriers. In: Recent Researches in Electrical Engineering - Procee-
dings of the 13th International Conference on Circuits, Systems, Electronics, Con-
trol & Signal Processing (CSECS ‘14), Lisbon, Portugal, October 30 – November 1,
2014. Ed: George Vachtsevanos, Cornelia Aida Bulucea, Nikos E. Mastorakis, Klimis
Ntalianis, World Scientific and Engineering Academy and Society (WSEAS), 2013. p.
180-188. ISBN 978-960-474-392-6. ISSN: 1790-5117. Available at: http:// www.wseas.
us/e-library/conferences/2014/Lisbon/ELEL/ ELEL-21.pdf

[20]	 I. Jacobson, P. W. Ng, P. E. McMahon, I. Spence, and S. Lidman, “The essence of soft-
ware engineering: The SEMAT Kernel,” in Queue, vol. 10, no. 10, ACM, Oct. 2012. Doi:
10.1145/2381996.2389616

[21]	 I. Jacobson, P. W. Ng, P. E. McMahon, I. Spence, and S. Lidman, The Essence of Soft-
ware Engineering: Applying the SEMAT Kernel. Addison-Wesley Professional, New
Jersey, 2013.

[22]	 OMG - Foundation for Agile Creation and Enactment of Software Engineering RFP.
[Online]. Available at: http://www.omg.org/cgibin/doc?ad/2011-6-26

[23]	 OMG - Essence Kernel and Language for Software Engineering Methods. [Online].
Available at: http://www.omg.org/spec/Essence/1.0/

[24]	 PMBOK - Project Management Institute, A Guide to the Project Management Body of
Knowledge (PMBOK® Guide) --Fifth Ed. Project Management Institute, 2013.

PART 2
MODELING

225

Chapter # 13
Automotive

Safety Requirements
Specification

1.	 Introduction

Modern vehicles are definitely “software-intensive” systems and software is now con-
trolling an increasing number of traditional functions [14]. The need for more efficient
control has motivated the introduction of a considerable amount of software. For exam-
ple, the hybrid model Ampera from Opel, manufactured by General Motors, has over 10
million lines of code [15] and a modern high-end car, which features around 100 million
lines of code executing on ECUs [16], and this number is planned to grow to 200-300 mi-
llion in the near future.

Unfortunately, together with this scenario, the occurrence of multiple automotive recalls
has been increasing [6]. For this reason, the automotive engineers should use automo-
tive standards like ISO 26262 and spend more time in the analysis and design phases.
In particular, in this paper, we tackled the software safety requirements specification in
order to diminish the number of vehicle recalls and increase the automotive software
security.

As defined in the IEEE Standard Glossary of Software Engineering Terminology [1], a re-
quirement is a condition or capability needed by a user to solve a problem or achieve

Jorge Aguilar Cisneros, Emmanuel
Gulias Mata, Luis Fernando
Torreblanca Macías.
Departamento de Ingenierías,
Universidad Popular Autónoma del
Estado de Puebla
21 sur #1103 Col. Santiago, Puebla Pue.,
México C.P. 72310
Jorge.aguilar@upaep.edu.mx,
{emmanuel.gulias01, luisfernando.
torreblanca}@upaep.mx

Carlos Fernández y Fernández
Instituto de Computación, Universidad
Tecnológica de la Mixteca, carretera a
Acatlima Km. 2.5 Huajuapan de León,
Oax., México C.P. 69000,
caff@mixteco.utm.mx

226 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

an objective. In other words, requirements define how a system will behave. In soft-
ware development, requirements specification is a crucial step in the development
process, as more often than not, it dictates the overall outcome of the system. Defec-
tive requirements will usually send the development process spiraling down towards
failure. [2].

Requirements engineering is the software engineering branch that involves accurate
description of the objectives and methods to be used in a software project. Not only
does it cover requirements specification, but also their management throughout the
life cycle. This practice manages requirements from the moment they are defined,
passing through any changes made, to the moment they are met. It is one of the more
important aspects of software development.

However, are they really that important? Is it really worth it investing so many resour-
ces in tools and training? A thorough requirements definition involves a great deal of
effort and resources. However, it is only necessary to analyze certain real life examples
of projects with defective requirements.

On September 14, 2005, an Air Route Traffic Control Center in Los Angeles, CA. lost all
communication with 400 airplanes. [3] The reason? A glitch in the system which made
it run for 50 days before it crashed, needing a manual reboot before that happened.
Thanks to the collision avoidance systems built in the aircraft, a situation that could
have ended in tragedy was averted. The troubling aspect of this situation is that de-
velopers were aware of the error. However, they didn’t inquire in the repercussions it
could have when fully implemented.

On June 4, 1996, the European Space Agency launched Ariane 5, a massive rocket whose
mission was to launch three satellites into orbit. After 10 years of development and $7
billion to produce it, most people were eager to see it in action. After 37 seconds, the
rocket exploded [4]. It turns out, the system tried to store a 64-bit floating point num-
ber into a 16-bit integer variable. When it obviously couldn’t, the system shut down
and the disaster occurred. The worst part of the matter, is that the defective piece of
code wasn’t even necessary in this new Ariane model. However, a faulty requirement
analysis didn’t take that into account and allowed it to stay.

Simple errors. Simple solutions. Enormous consequences. In both cases, the errors
triggered a total shutdown of operations. The systems involved are often known as
mission critical systems. One of them could even be just a part of a bigger and more
complex system, which will then affect the whole thing. In an online banking system,

227CHAPTER # 13 - AUTOMOTIVE SAFETY REQUIREMENTS SPECIFICATION

this could mean thousands of transactions to be lost, and angry clients making calls
and contacting tech support. However, what if the failure endangered a person’s life?
Let us say, a commercial jet’s engine, or a car’s braking system. On the other hand,
there are also non-mission critical systems, which in the event of failure would only be
considered a minor nuisance to be fixed when possible. While their malfunction might
not be as catastrophic as mission critical systems, that does not mean they should be
allowed to have sloppy requirements.

This article’s interest lies on non-mission critical software systems for the automotive
industry, specifically in the aspect of vehicular safety. Donald Firesmith, of the Soft-
ware Engineering Institute, stated that there are still many defects found in require-
ments specification [5]. Recently, software innovation focus for the automotive sector
has shifted towards improvement of electronic control units (ECUs). But at the same
time, the number of defective automobiles delivered to customers has increased ac-
cordingly [6]. This is probably due to the lack of a unified design schema for automo-
tive software.

Even though there is a considerable quantity of methods and techniques used in re-
quirements specification, identification, analysis, management and verification, it is
unclear why the produced systems lack the desired quality. To address this issue, we
propose a requirement modeling style as indicated by ISO 26262 functional safety
standard for road vehicles, and following SysML, a modeling language specification for
systems engineering applications.

2.	 Background

ISO 26262 is to be used for mass-produced passenger cars of up to 3500 kg of weight
that have at least one electrical or electronic (E/E) systems installed. 26262’s aim is to
address possible hazards that could impact the behavior or functionality of E/E safety
systems. Part 6 of this standard, which is the main source of information to be used, spe-
cifies the requirements for product development at the software level. It includes initial
requirements specification, architectural and unit design, testing, software integration
and verification. We will be focusing on the safety requirements specification section as
we will explain how to represent these automotive requirements in order to reach the
security required for automotive systems development.

Safety requirements have to be specified and detailed in a hierarchical structure. The
structure and dependencies of safety requirements used in ISO 26262 are shown in Fi-
gure 1.

228 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Figure 1. Structure of safety requirements

The automotive safety requirements specification has to be correct with respect to their
attributes and characteristics. In accordance with ISO 26262, the safety requirements
characteristics are:

1.	 Unambiguous and comprehensible. That mean, the requirement is unambi-
guous if it is a common understanding of the meaning of the requirement. The
requirement is comprehensible if the reader at an adjacent abstraction level
understands its meaning.

2.	 Atomic. It is atomic when it is formulated in such a way that it cannot be divi-
ded into more than one safety requirement at the considered level.

3.	 Internally consistent. Each safety requirement contains no contradictions with
itself.

4.	 External Consistency. Multiple safety requirements do not contradict each
other.

229CHAPTER # 13 - AUTOMOTIVE SAFETY REQUIREMENTS SPECIFICATION

5.	 Feasible and verifiable. It can be implemented with the constraints of the item
development.

The safety requirements attributes are:

1.	 A unique identification remaining unchanged throughout the safety lifecycle.
2.	 A status
3.	 An ASIL

Safety requirements constitute all requirements aimed at achieving and ensuring the
required ASIL’s.

Automotive Safety Integration Level (ASIL) is a risk classification scheme defined in ISO
26262 [18] that indicates the level of hazard expected in a given scenario. This is done by
analyzing the risk’s potential severity, the exposure it carries and how controllable it is.
ISO 26262 explains 4 levels of ASIL: A, B, C, D where level A is the lowest level of risk and
D is the highest level. It is implied that a system credited with ASIL D also complies with
the lower levels of the standard (see Figure 2).

Figure 2. ISO 26262, ASILs Level.

There are four safety levels defined at ISO26262 Standard: A, B, C and D. Additionally,
there are three criteria to determine someone of these levels: severity, probability of
exposure and controllability.

•• Severity. Quantitative measurement of the consequences of a car accident. (See
Table 1).

Table 1. Classes of Severity [18]

Severity
S0 S1 S2 S3

No injury light and moderate
injuries

severe and life-
threatening injuries
(probable survival)

life-threatening
injuries (uncertain

survival), fatal injuries

230 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

•• Probability of Exposure. Qualitative measurement of the possibility of the system
(and the user) being in a situation where the occurrence of the accident is concei-
vable (See Table 2).

Table 2. Classes of Probability of Exposure [18]

Probability of Exposure
E0 E1 E2 E3 E4

improbable very low
probability low probability medium

probability high probability

•• Controllability. Qualitative measurement of the capability of the user to avoid a
dangerous situation. This criterion is specific to the automotive domain where the
user (the driver) can exercise a certain control on a permissive system (the vehicle
does not inhibit unforeseen behaviors). (See Table 3).

Table 3. Classes of Controllability [18]

Controllability
C0 C1 C2 C3

controllable in general simply controllable normally controllable difficult to control or
uncontrollable

These three criteria allow determining in a systematic way the ASIL of a system or of one
of its features. (See Table 4).

Table 4. Automotive Safety Integrity Levels (ISO 2008)

Severity Exposure
Controllability

C1 C2 C3

S1

E1 QM QM QM
E2 QM QM QM
E3 QM QM A
E4 QM A B

S2

E1 QM QM QM
E2 QM QM A
E3 QM A B
E4 A B C

S3

E1 QM QM A
E2 QM A B
E3 A B C
E4 B C D

231CHAPTER # 13 - AUTOMOTIVE SAFETY REQUIREMENTS SPECIFICATION

If the evaluation leads to an ASIL quotation lower than level A, a QM quotation
(for Quality Management) is assigned to the event and no safety requirements
are defined for the system. A QM quotation means that a Quality Management
Process is mandatory and sufficient to meet the safety goal [17].

Let us say we follow the guidelines established by ISO 26262 and write require-
ments that comply with ASIL D.

Is it even necessary to model those requirements? 75% of automotive companies
design by using iterating methodologies such as Rapid Control Prototyping (RCP)
[7]. While these methods are not to be considered as true requirements engi-
neering, they are quite useful for providing an ampler look of the system. Model
Based Requirement Engineering and Model Based Testing reduce costs, testing
times and defects injected [8]. Because of this, accurate requirement modeling
helps enhance the overall definition of the process.

There are several different proposals for automotive requirement modeling. The
Aspect-Oriented Requirements Engineering (AORE) methodology enables to mo-
del the collaboration among the distributed embedded automotive software sys-
tems in terms of aspects and generate multiple product lines while assuring a
set of non-functional requirements including safety, performance and cost. [9].

Formal Service description Language (ForSeL) for model-based requirements en-
gineering. The basic notion in ForSeL is a service representing a functional re-
quirement. Each service describes a system “re”-action that is triggered by a set
of input actions – (but only) if an additional precondition holds. The functional
part of a specification is then obtained by the combination of a finite number of
services. There are two kinds of preconditions which are often mixed up in prac-
tice: sufficient and necessary preconditions. ForSeL describes functional require-
ments in terms of formal services [10].

The purpose of the EAST-ADL language is to capture automotive electrical and
electronic systems with sufficient detail to allow modeling for documentation,
design, analysis, and synthesis. This language specification describes how in-
formation needed for relevant analysis and synthesis can be captured but does
not define how the analysis or synthesis should be done. EAST – ADL has cons-
tructs that deal with the safety requirements specification. The requirements
part will be compliant with UML2. Figure 3 shows a diagram for a safety requi-
rement [19].

232 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Figure 3. Diagram for requirements overview.

EAST-ADL2 is an architecture description language specifically dedicated to automotive
systems. It describes the overall functioning of a system in a vehicle, analysis, design,
implementation and operational level [11]. Aspectual models cover three different mo-
deling techniques (EAST-ADL2, timed automata and signal matrix) and combines them
into UPPAAL specifications for easy simulation and verification [12]. Despite the wide
array of methodologies to choose from, we have decided to use just one: SysML.

The Systems Modeling Language (SysML) is a general-purpose modeling language for
systems engineering applications that supports the specification, analysis, design, ve-
rification and validation of a wide array of systems or subsystems. These systems may
include hardware, software, information, processes, personnel, and facilities. It was
developed as an extension of the Unified Modeling Language (UML 2), which is more
software oriented. It is more flexible and supports requirement engineering diagrams,
which allow for performance and qualitative analyses, useful in safety requirements.
SysML reuses a subset of UML 2 and provides additional extensions to satisfy the re-
quirements of the language. It is designed to provide constructs for modeling a wide
range of systems engineering problems. SysML is particularly effective in specifying
requirements.

SysML provides modeling constructs to represent text-based requirements. The requi-
rements diagram can depict the requirements in graphical, tabular, or tree structure
format. (See Figures 4-7).

233CHAPTER # 13 - AUTOMOTIVE SAFETY REQUIREMENTS SPECIFICATION

Figure 4. Requirement diagram

Figure 5. Requirement specification

Figure 6. Requirement containment relationship

Figure 7. Trace Dependency

The diagrams above are only some of the diagram elements include in OMG SysML Ver-
sion 1.4 [20]

There are different ways to requirement specification: Natural Language, informal speci-
fication, semi-formal specification and formal specification. For this paper, we consider
Natural language and informal specification like informal specification.

234 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

An example of a requirement in natural language or informal specification could be:
“Signal lowFuelLevelWarning shall be set to Active when input totalFuelLevel is below
a predefined level. This level shall be 10% for tank size equal to or below 900 liters and
7% for tank sizes larger than 900 liters. The tank size is determined by the parameters
fuelTankSizeLeft and fuelTankSizeRight” [21]. Writing requirements in natural language is
subject to ambiguity and imprecision [22].

Structured Analysis is a semi-formal type of specification technique which combines the
use of natural language and graphical symbol with semantics. It has less potential for
ambiguity but requires technical Skills. For this type of requirements specification, we
can use SysML.

Specification language Z is considered a formal method based on its definition as “a
general description of the use of mathematical notations such as logic and set theory to
describe systems specifications and software design together with techniques of valida-
tion and verification based on mathematics” [23].

3.	 Development

When writing requirements for automotive safety, it is important to comply with ASIL
specifications [24]. As seen in Table 5, taken directly from ISO 26262 [13], using natural
language is highly encouraged for all levels of ASIL. However, for levels A and B, infor-
mal notation is also recommended for use. Lastly, levels B through D can be written in
a semi-formal manner. “++” indicates that the method is highly recommended for the
identified ASIL; “+” indicates that the method is recommended for the identified ASIL;
“o” indicates that the method has no recommendation for or against its usage for the
identified ASIL.

Table 5 - Notations for software unit design

Methods
ASIL

A B C D
1a Natural language ++ ++ ++ ++
1b Informal notations ++ ++ + +
1c Semi-formal notations + ++ ++ ++
1d Formal notations + + + +

Once the requirements are written and verified they comply with the desired level of
ASIL, they should be graphically represented using the corresponding model described
by SysML. SysML introduces requirements diagrams in comparison to UML. As shown in

235CHAPTER # 13 - AUTOMOTIVE SAFETY REQUIREMENTS SPECIFICATION

Figure 8, requirement diagrams model all requirements for a system, using relationships
between them to establish a client-supplier connection in which the first depends on
the latter, and as such, any changes in the supply will provoke changes in the client. The-
se relationships can be defined as:

»» A requirement that derives in another one

»» A requirement that is satisfied by a block, module or subsystem

»» A requirement that is verified by a certain test case

»» A requirement that is broken down and refined in a specified use case

»» A requirement that can be traced back to its origin

Figure 8. Requirement Diagram Example

In a SysML requirement diagram, objects with the <<requirement>> tag must have an
ID to identify them, and the text related to the requirement. Different objects are to be
considered as side notes, each with their own title (such as RefinedBy, VerifiedBy, Satis-
fiedBy) and their own tag like <<useCase>>, <<testCase>> or <<block>>. The relationships
defined earlier in this document, are to be set in the lines connecting each object.

When gathering requirements, these diagrams offer two main advantages: 1) they are
able to provide a detailed description of each requirement, and the role they fulfill
within the system. 2) They define with detail the functionality and interaction of the

236 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

subsystems that compose the system. While a proper software requirements specifica-
tion (SRS) document is still in order, a requirement diagram expands everything stated
on the SRS and supports it with an extensive graphical definition.

While requirements diagrams are a central part of SysML models, they lose their value
if not supported by other diagrams to expand on what has been defined on the main
model. These supporting diagrams are divided into behavior and structure diagrams.

3.1	 Behavior Diagrams

Behavior diagrams are broken down into four types: activity, sequence, state machine
and use case diagrams.

Activity diagrams specify the necessary process to transform inputs into outputs. This
diagram represents the flow of information from an initial state to a final one. These
flows traverse several different activities and they’re able to fork into separate paths,
or converge into a single one in any given moment. It’s useful because it allows for
conditions to be established and then to analyze how each of them affect the system.
A single activity can also invoke an entirely new activity diagram with its own action
flow to produce an output for said activity. An example of this diagram can be seen in
Figure 9.

Figure 9. Activity Diagram Example

Sequence diagrams are designed to represent interactions among different subsystems
or actors. They provide tools that allow for the creation of complex scenarios, including
logical routing, system decomposition and referencing sequences. Its main advantage is
that it models an overview of the average behavior of the system, and how it will interact
with external agents.

237CHAPTER # 13 - AUTOMOTIVE SAFETY REQUIREMENTS SPECIFICATION

Figure 10. Sequence Diagram Example

These diagrams show all actors involved with the system as white boxes with a lifeline
extending beneath them: users, interfacing systems and the system itself. These lifelines
are connected by lines whenever an actor interacts with another, and each line is usually
preceded by a precondition, the line itself has the action occurring, and the receiving
actor has the outcome of said action.

State machine diagrams are used to represent the lifecycle of a system block. They are
used because they support asynchronous event-based behavior, stating triggers, guards,
actions, entries, exits and if-then activities. They can include nested state diagrams and
permit the communication between blocks during transitions. Figure 11 shows a simple
example of a state machine diagram.

Figure 11. State Machine Diagram Example

238 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

One of the most used diagrams in software development, use case diagrams (see Figu-
re 12), describe basic interactions between system actors and the goals expected from
them. Relationships between use cases can be noted by the <<include>> and <<extend>>
tags.

Figure 12. Use Case Diagram Example

Include relationships are used when an entire use case’s functionality is going to be
used in another one. Extend relationships are used when the behavior described in a
use case can be, optionally, included in another use case.

As stated before, SysML is a modified version of UML. While activity diagrams have been
adapted from their UML form, sequence, state machine and use case diagrams present
virtually little to no change from their UML counterparts.

3.2	 Structural Diagrams

Structure diagrams are separated in block definition, internal block, package and para-
metric diagrams.

Package diagrams are the only structural diagrams to be unchanged from UML. They are
used to organize the whole model by assigning group elements into a name space. The

239CHAPTER # 13 - AUTOMOTIVE SAFETY REQUIREMENTS SPECIFICATION

model can be organized in several different ways: by system hierarchy, diagram type or
viewpoints to augment the organization. An example of a package diagram is shown in
Figure 13.

Figure 13. Package Diagram Example

Block definition diagrams describe the overall structure of an element or even a comple-
te system. They are represented as a box with multiple compartments used to describe
characteristics such as properties, operations, constraints, allocations, requirements sa-
tisfied or any other user defined compartment.

Figure 14. Block Definition Diagram Example

240 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

As seen in Figure 14, block definition diagrams establish the connections and relations-
hips between multiple blocks within a system.

Each block can be further refined by an internal block diagram. These describe the in-
ternal structure of a block in relation to its properties and connectors. They show parts
of the block, connected by lines and specifying the item flow between them. This can be
seen in Figure 15.

Figure 15. Internal Block Diagram Example

A new diagram introduced by SysML is the parametric diagram. It is used to express
constraints between value properties. This provides support for engineering analyses
and facilitates the identification of critical performance properties. These can be expres-
sed in a formal or informal language. Constraints are applied to a block and allow the
designer to identify scenarios to take into account when developing the block. Figure 16
shows a simple parametrics diagram.

Figure 16. Parametrics Diagram Example

Overall, the interaction between structural diagrams goes: internal block diagrams de-
fine a block while at the same time a parametrics diagram specifies the constraints it

241CHAPTER # 13 - AUTOMOTIVE SAFETY REQUIREMENTS SPECIFICATION

involves. Then, blocks are connected in a block definition diagram before being grouped
up in its own package diagram.

4.	 Conclusions

Software development is definitely not a simple task. If not taken seriously, defective
software systems will be delivered to clients, resulting in economic loses or even worse.
As said by Charette [2] “we waste billions of dollars each year on entirely preventable
mistakes”. Requirements are only the first step towards quality software, but it just might
be the most crucial one. To keep in line with ISO 26262, requirements should be modeled
in a semi-formal manner. SysML provides the necessary tools required to do exactly that.
Detailed requirements specification provides an in-depth look to the system’s behavior,
and therefore, helps with the following phases of software development. This in turn,
ensures the correct functioning of the software and prevents future monetary losses or
even, human casualties.

While there is no evidence to prove that SysML modeling reduces the amount of defects
found when developing a system, we believe that, by providing designers and develo-
pers with in-depth descriptions of every single component that integrates an automotive
software system, the crucial planning and design phases would become more robust.
In this scenario, by performing a thorough modeling of the system, features would not
be overlooked, points of failure would be detected and not so many defects would be
injected into the system.

5.	 References

[1]	 IEEE, IEEE Std. 610.12-1990, “IEEE Standard Glossary of Software Engineering Termino-
logy”, 2002, Institute of Electrical and Electronics Engineers.

[2]	 R. Charette, “Why Software Fails”, Sept-2005, IEEE Spectrum. [Online]. Available:
http://spectrum.ieee.org/computing/software/why-software-fails/0

[3]	 L. Geppert, “Lost Radio Contact Leaves Pilots On Their Own”, Nov-2004, IEEE
Spectrum. [Online]. Available:http://spectrum.ieee.org/aerospace/aviation/
lost-radio-contact-leaves-pilots-on-their-own

[4]	 N. Bashar, “Ariane 5: Who Dunnit?” May-1997, IEEE Software.
[5]	 D. Firesmith, “Common Requirements Problems, Their Negative Consequences, and

the Industry Best Practices to Help Solve Them”, Feb-2007, Journal of Object Techno-
logy. [Online]. Available: http://www.jot.fm/issues/issue_2007_01/column2.pdf

[6]	 C. Areias, J. Cunha, D. Iacono, F. Rossi, “Towards Certification of Automotive Software”,
2014 IEEE International Symposium on Software Reliability Engineering Workshops.

242 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

[7]	 Broy, M., Kirstan, S., Krcmar, H., and Schätz, B, “What is the benefit of a model-based
design of embedded software systems in the car industry?”, in Rech, J., and Bunse,
C. (Hrsg.) Emerging Technologies for the Evolution and Maintenance of Software
Models. 2011. 343-369.

[8]	 A. Mjeda, M. Hinchey, “Requirement-Centric Reactive Testing for Safety-Related Au-
tomotive Software”, 2015 IEEE/ACM 2nd International Workshop on Requirements En-
gineering and Testing.

[9]	 M. Aoyama, A. Yoshino, “AORE (Aspect-Oriented Requirements Engineering)
Methodology for Automotive Software Product Lines”, 2008 15th Asia-Pacific Soft-
ware Engineering Conference.

[10]	 J. Hartmann, S. Rittmann, D. Wild, P. Scholz, “Formal Incremental Requirements Spe-
cification of Service-Oriented Automotive Software Systems”, 2006 IEEE Computer
Society.

[11]	 X. Liu, Z. Wang, “Extending EAST-ADL2 to Support Aspectual Requirement Specifica-
tion and Analysis for Automotive Software”, 2011 International Joint Conference of
IEEE TrustCom-11/IEEE ICESS-11/FCST-11.

[12]	 X. Liu, X. Yan, Y. Li, X. Che, C. Mao, “Modeling Automotive Software Requirements with
Aspectual Models”, 2010 Second WRI World Congress on Software Engineering.

[13]	 ISO, ISO 26262, “Road vehicles – Functional Safety”. Part 8: “Supporting Processes”.
2011. International Organization for Standardization.

[14]	 G. Lami, F. Falcini, “Automotive SPICE Assessments in Safety Contexts: an Experien-
ce Report”, 2014 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW).

[15]	 J. Cobb, “IBM outlines how it helped Chevrolet with the Volt’s de-
velopment”, [On line]. Available http://gm-volt.com/2011/05/11/
ibm-highlights-its- help-with-the-chevrolet-volts-development/

[16]	 D. Zax, “Many Cars have a hundred million lines of code”, [On line]. Available https://www.tech-
nologyreview.com/s/508231/many-cars-have-a-hundred-million-lines-of-code/

[17]	 H. G. Chalé Góngora, O. Taofifenua, T. Caudré, A process and Model for Automo-
tive Safety-Critical Systems Design, INCOSE, Vol. 20, Issue 1, pp 1211-1226. 2010.
DOI: 10.1002/j.2334-5837.2010.tb01135.x

[18]	 ISO, ISO 26262 “Road vehicles – Functional safety”. Part 9: “Automotive Safety Inte-
grity Level (ASIL)-oriented and safety-oriented analyses”. 2011, International Orga-
nization for Standardization

[19]	 EAST – ADL Domain Model Specification V2.1.12, 2011-2013, EAST – ADL Association.
[20]	 OMG Systems Modeling Language (OMG SysML), Version 1.4, 2015.
[21]	 P. Filipovikj, M. Nyberg, G. Rodríguez-Navas, “Reassessing the Pattern-Based Ap-

proach for Formalizing Requirements in the Automotive Domain”, 22nd International
Requirements –Engineering Conference (RE), 2014. P. 444-450.

243CHAPTER # 13 - AUTOMOTIVE SAFETY REQUIREMENTS SPECIFICATION

[22]	 M. H. L. Lee, W. C. In, “Informal, Semi-formal, and Formal Approaches to the Specifi-
cation of Software Requirements”, Thesis Angelo State University. 1992

[23]	 D. C. Ince, “An introduction to Discrete Mathematics, Formal System Specification,
and Z”, Oxford University Press, Inc., New York, 1992.

[24]	 E. Gulias, L. F. Torreblanca, J.R. Aguilar, C. Fernandez, “Using SysML Modeling to Accu-
rately Represent Automotive Safety Requirements”, 4th International Conference on
in Software Engineering Research and Innovations. CONISOF 16, IEEE. DOI 10.1109/
CONISOFT.2016.12.

244

Chapter # 14
Conceptual synthesis of
practice as a theoretical
construct in Software
Engineering

Alexander Barón-Salazar
Galeras.Net Research Group
Universidad de Nariño
San Juan de Pasto, Colombia
abaron_98@udenar.edu.co

Carlos Mario Zapata-Jaramillo
Research group in Computer
Languages
Universidad Nacional de Colombia—
Sede Medellín
Medellín, Colombia
cmzapata@unal.edu.co

1.	 Introduction

Semat (Software Engineering Method and Theory) seeks to redefine software enginee-
ring from the critical issues the community identifies. Semat focuses on two main objec-
tives: finding a widely accepted kernel of elements describing the essence of software
engineering, and defining an appropriate and widely accepted theoretical basis for the
discipline [1].

Any process to develop a unified theoretical basis should include a parallel effort to
achieve consensus on terminology. This task is difficult for software engineering, since a
wide range of definitions and interpretations of commonly used terms in the profession
are used [2]. According to Johnson and Ekstedt [3], software engineering lacks a common
vocabulary to efficiently share knowledge, and they propose the definition of this voca-
bulary as the first step towards building a general theory.

A conceptual synthesis is a way to build a unified definition of a theoretical construct with
several definitions in the same context. Such a synthesis allows for identifying common
elements about the way how several proposals characterize and define such term.

Software practice is a theoretical construct with several definitions from the perspective
of each proposal. Some approaches define and characterize software practice in detail

245CHAPTER # 14 - CONCEPTUAL SYNTHESIS OF PRACTICE AS A THEORETICAL CONSTRUCT IN SOFTWARE ENGINEERING

[1, 4, 5]; others define it from specific contexts [6]; in other cases, no explicit definition
is done [7]. Summarizing, no definition reconciles the different points of view, so a con-
ceptual reference for the construct of “practice” in the software engineering domain is
still needed.

In this Chapter, we propose a conceptual synthesis of “practice” as a theoretical
construct in software engineering by using a strategy for easing the identification,
collection, and analysis of the relevant state of the art. The applied strategy is based
on the process of Systematic Literature Review (SLR) proposed by Kitchenham and
Charters [8].

SLR should be thorough and unbiased, otherwise, a scientific value is unachieved; SLR
is thorough when it includes all the relevant state-of-the-art; SLR is unbiased when it
includes enough of the state-of-the-art review for supporting and refuting the hypothe-
sis [9]. Thus, the strategy we apply allows for a conceptual synthesis for ensuring valid
results as a basis for a definition of the practice as a theoretical construct the software
engineering community can accept and share.

Our methodological approach is based on pre-conceptual schemas as a mechanism for
the extraction and synthesis of information. A pre-conceptual schema is a representa-
tion of a specific domain. Pre-conceptual schemas allow for representing the terminolo-
gy of a domain in order to ease their translation into conceptual schemas [10].

We structure of this Chapter as follows: in Section II we describe the theoretical fra-
mework; In Section III, we present the background on how different approaches define
software engineering practice; in Section IV we describe the methodological approach
for the development of conceptual synthesis in software engineering; in Section V we
propose the conceptual synthesis of practice as a theoretical construct in software engi-
neering; finally, conclusions and future work are discussed in Section 5.

2.	 Theoretical Background

2.1	 Kernel for methods in software engineering

The call for action is a statement of the community for describing software enginee-
ring as a discipline with immature practices and specific problems [11]. Semat leads
the development and promotion of a kernel and a language for defining methods
and software engineering practices in order to address the software engineering
problems [12].

246 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

The Semat kernel provides a common ground for the definition of software development
practices and includes the essential elements prevailing in each software engineering
endeavor. The kernel allows for composing practices and creating specific methods which
can be tailored to the particular needs of a community, a project, a team, or an organiza-
tion. So far, OMG (Object Management Group) has published two versions of the standard
Essence–Kernel and Language for Software Engineering Methods–[5].

2.1.1	 Areas of concern

Semat kernel is organized in three areas of concern: customer, solution, and endeavor.
Each area of concern is focused on a specific aspect of software engineering. Customer
area of concern contains everything related to the use and operation of the software
system; solution area of concern contains everything people need to specify and deve-
lop the software system; finally, endeavor area of concern contains everything related
to the team and how the team does its work. Each area of concern contains alphas, ac-
tivity spaces, and competencies. The areas of concern of the Semat kernel are shown in
Figure 1.

Customer

Solution

Endeavor

Figure 1. Areas of concern of the kernel [1].

2.1.2	 Alphas

An Alpha—Abstract-Level Progress Health Attribute—captures the key concepts involved
in software engineering. Each Alpha has a set of predefined states used to assess the
health and progress of a software engineering endeavor; also, each state contains a
checklist to verify compliance with the conditions of the state.

In the Customer area of concern, the team needs to understand stakeholders and the
opportunity of a software engineering endeavor. Opportunity Alpha is the set of circum-

247CHAPTER # 14 - CONCEPTUAL SYNTHESIS OF PRACTICE AS A THEORETICAL CONSTRUCT IN SOFTWARE ENGINEERING

stances that make up an appropriate scenario to develop or change a software system.
Stakeholders Alpha constitutes individuals, groups or organizations that affect or are
affected by a software system.

In the Solution area of concern, the team needs to establish a common understanding
of the requirements to implement, build, test, deploy, and maintain a software system
satisfying such requirements. Requirements Alpha is what the software system has to
do to treat the opportunity and satisfy stakeholders. Software System Alpha includes
software, hardware, and data.

Team, work, and way of working are defined in the Endeavor area of concern. Work Alpha
involves a physical or mental endeavor to get a result. Team Alpha is a group of people
actively involved in the development, maintenance, deployment, and support of a spe-
cific software system. Way of Working Alpha is the set of practices and tools adapted
that a team uses to guide and support its work. Alphas of the Semat kernel are shown
in Figure 2.

C
us
to
m
er

So
lu
tio
n

En
de
av
or

 Requirements Software
System

 Opportunity Stakeholders

 Work Team

Way of
Workig

provide

fulfils

Performs and plans

Se
tu
p
to
 a
dd
re
ss

pr
od
uc
es

focuses
Scopes and
constrains

U
se and

consum
e

support

Figure 2. Alphas of the kernel [1].

2.1.3	 Activity Spaces: The things to do

The kernel has a set of activity spaces to provide a vision based on the activity of soft-
ware engineering.

248 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

In the Customer area of concern, the team must understand the opportunity and engage
stakeholders. The activity spaces of the Customer area of concern are: explore possibi-
lities, understand the stakeholder needs, ensure the stakeholder satisfaction, and use
the system.

In the Solution area of concern, the team should develop an appropriate solution to ad-
dress the opportunity and meet requirements. The activity spaces of the Solution area
of concern are: understand the requirements, shape the system, implement the system,
test the system, deploy the system and operate the system.

The team is formed in the Endeavor area of concern, and the progress of work is aligned
with the way of working. The way of working depends on the team limitations and gover-
nance rules. The activity spaces of the Endeavor area of concern are: prepare to do the
work, coordinate activities, support the team, track progress, and stop the work. Activity
spaces of the Semat kernel are shown in Figure 3.

C
us
to
m
er

So
lu
tio
n

En
de
av
or

Prepare to do
the work

Coordinate
activity

Support the
team Track progress Stop the work

Understand
the

requirements

Shape the
system

Implement the
system

Test the
system

Deploy the
system

Operate the
system

Explore
possibilities

Understand
stakeholders needs

Ensure stakeholder
satisfaction Use the system

Figure 3. Activity Spaces [1].

2.1.4	 Competencies: The Abilities Needed

The kernel provides a set of skills complementing the alphas and activity spaces to pro-
vide an overview of the key skills required to perform the work of a software engineering
endeavor.

In the Customer area of concern, the team must be able to demonstrate a clear unders-
tanding of the technical aspects and the business, and the team should have the ability

249CHAPTER # 14 - CONCEPTUAL SYNTHESIS OF PRACTICE AS A THEORETICAL CONSTRUCT IN SOFTWARE ENGINEERING

to accurately convey the viewpoint of the stakeholders. The Customer area of concern
requires competencies for representing the stakeholders.

In the Solution area of concern, the team has to be able to capture and analyze the re-
quirements, and build and operate a software system satisfying such requirements. So,
the following competencies are needed: analysis, development, and testing.

In the Endeavor area of concern, the team has to be able to organize and manage work.
Accordingly, some team members should have leadership and management skills. Com-
petencies of the Semat kernel are shown in Figure 4.

C
us
to
m
er

So
lu
tio
n

En
de
av
or

Analysis Development Testing

Stakeholder
representation

Leadership Management

Figure 4. Competencies of the kernel [1].

2.2	 Systematic Literature Review—SLR

An SLR is intended to summarize, compile, and synthesize existing research on a subject
area or phenomenon of interest. SLR is a contribution to current knowledge, because its
findings are obtained when the relevant state of the art is analyzed as a whole instead
of isolated reading documents. SLR should classify the state of the art, identify research
trends, support for further research, and establish the importance of a research pro-
blem [14].

2.2.1	 Some work on SLR

Lenberg et al. [15] show an SLR about the human behavior in software engineering. Such
study has the aim to show the interest of the scientific community about the human as-

250 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

pects of software engineering and create a common platform for future research in the
area. The authors propose a definition of behavior in software engineering and present
the results of an SLR based on this definition. Some other studies show the increasing
application of SLR in software engineering [16, 17, 18, 19].

2.2.2	 Kitchenham and Charters proposal [8]

A methodological strategy for the development of conceptual syntheses is based on a
guide for conducting an SLR in software engineering [8]. Such a guide presents a set
of lessons on the implementation of the process of SLR in the software engineering
domain [20, 21] and the results of an SLR directed to identify, evaluate, and synthesize
published research on experiences of systematic reviews and proposals to improve the
process [9]. According to Kitchenham and Charters [8], an SLR involves several discrete
activities grouped into three phases: planning, realization, and reporting. Process for
conducting SLR is illustrated in Figure 5.

Planning Realization Reporting

Specifying dissemination
mechanisms

Formatting the main
report

Evaluating the report

Identification of the
need for a review

Commissioning a review

Specifying the research
question(s)

Developing a review
protocol

Evaluating the review
protocol

Identification of
research

Selection of primary
studies

Study quality
assessment

Data extraction and
monitoring

Data synthesis

Figure 5. The process for SLR [8].

2.3	 Pre-conceptual schema

Pre-conceptual schemas are representations of a specific domain the experts can vali-
date. Pre-conceptual schemas allow for the representation of the terminology of a do-
main for easing their translation into conceptual schemas. Pre-conceptual schemas use
a notation based on conceptual graphs, with additional symbols representing dynamic

251CHAPTER # 14 - CONCEPTUAL SYNTHESIS OF PRACTICE AS A THEORETICAL CONSTRUCT IN SOFTWARE ENGINEERING

properties. A pre-conceptual schema is a labeled, unlooped di-graph with multiple arcs,
made with nodes that are connected with arches [10]. The basic syntax of pre-conceptual
schemas is shown in Figure 6.

CONCEPT INSTANCE STRUCTURAL
RELATIONSHIP

DYNAMIC
RELATIONSHIP

REFERENCECONNECTION IMPLICATION INSTANCE
CONNECTION

Figure 6. Basic syntax of pre-conceptual schemas [10]

3.	 Practice in software engineering

Kirk and Tempero [4] try to better understand how successful organizations adapt
software practices according to their context and their objectives to the software,
based on the premise: “the best practice depends on the application context.” They
argue the software development activities are the same in all organizations, but the
difference lies in the way how they are performed. They conceive software practice
as the strategy for addressing a development activity, and they warn the success of
the activity largely depends on the adaptation of practice to the specific context of
the project.

The research of Rolandsson et al. [7] describes a study of companies with two soft-
ware development approaches: proprietary software (closed work practices) and
open source software (based on cooperation and shared knowledge practices). This
approach integration results in transforming their practices: practices of open sou-
rce software are documented and implemented by controls; instead, proprietary
software practices associate values such as helping others, autonomous learning,
and voluntary cooperation. The study lacks an explicit definition of practice of soft-
ware, but we can implicitly infer a practice as an activity of the development pro-
cess, which is common to both approaches. Such software practice refers to how
the development team interacts according to the philosophy of the approach. In
this case, the definition focuses on research interest: the ease of integration of the
practice.

252 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Passos et al. [6] study the software practice from an ethnographic approach. Ethno-
graphy related to the adoption of a cultural perspective for observing and interpreting
the events, actions and behaviors within a specific community. The results show eth-
nographic methods are indispensable for understanding the software practice. They
conceive software practice as a software activity with cultural, social, and political
aspects influencing the context. In this case, the proposal focuses on the definition of
the software practice from human aspects, regardless of other visions.

The Object Management Group defines a specification about the Kernel and Langua-
ge for Software Engineering Methods proposed by the Semat (Software Engineering
Method and Theory) Community; such Kernel and Language are known as Essence
[5]. Practice is defined by the OMG as a repeatable approach for a specific purpose. A
practice provides a systematic and verifiable manner to address a particular aspect of
a work. The practice has a clear objective expressed in terms of the results that can be
applied; the practice provides guidance to help and guide practitioners on what should
be done to achieve the goal, ensuring that the objective is understood in order to be
verified when such objective is achieved.

OMG exemplifies his proposal by using Scrum and user stories. In the same specifica-
tion, a language extension is applied to the Daily Scrum Meeting as software practice;
meanwhile, software practice is presented in another section of the specification as
an activity [5].

Jones [22] makes a compilation of best practices belonging to several technical areas
of software engineering. He proposes some criteria for determining when a practice
acquires the status of best practice and the measurement method to evaluate it. The
author believes that to be classified a practice as a best one, a language, a tool or a
method should exhibit some quantitative evidence in terms of improving quality, pro-
ductivity and other tangible factors.

Capability Maturity Model Integration (CMMI) represents collections of best practices
for supporting organizations in their improvement process. The model for develo-
ping CMMI-DEV is a collection of best practices covering the product lifecycle from
conception to delivery and maintenance. Levels are used in CMMI-DEV to describe
improving product development processes or services. A level comprises a set of
process areas, and a process area is a set of generic and specific practices. Generic
practices describe the activities considered important for a generic goal and contri-
bute to the institutionalization of the process associated with a process area. A spe-
cific practice is the description of an activity that is considered important to achieve

253CHAPTER # 14 - CONCEPTUAL SYNTHESIS OF PRACTICE AS A THEORETICAL CONSTRUCT IN SOFTWARE ENGINEERING

a specific objective of a process area [21]. The definition of practice the model repre-
sents is goal-oriented.

Scrum is a management framework used in agile projects in order to iteratively deliver
increments of high customer value. Projects progress through a series of iterations ca-
lled Sprints in Scrum. The work to be done in a Scrum project is listed in the product
backlog of the project. At the beginning of each Sprint, a planning meeting in which
the product owner prioritizes the work of the product backlog is made; then the Scrum
team selects the tasks that can be delivered during the next Sprint. Such tasks are mo-
ved from the product backlog of the project to the product backlog of the Sprint. Each
day during the sprint is held a brief meeting, which helps the team to stay aware of
the evolution of the project. At the end of each Sprint, the team demonstrates the full
functionality at a Sprint Review Meeting. Other terms than practice are used for des-
cribing the Scrum framework; however, 19 processes integrated into four phases are
described in Scrum. Each phase describes the process in detail including inputs, tools
and associated outputs. In each process, some elements are mandatory and other
ones are specific to the project, organization or industry [22].

Rational Unified Process (RUP) is an iterative, incremental software engineering process,
focusing on architecture and directed by use cases. RUP is aimed to ensure the pro-
duction of high quality software meeting the needs of its end users, within a predicta-
ble schedule and budget [23]. RUP provides guidelines, templates, and tools needed to
effectively implement best practices for solving common problems in software projects.
RUP is described in two dimensions: horizontal (dynamic aspects) and vertical (static
aspects). The dynamic aspects are cycles, phases, iterations, and milestones; the static
aspects are activities, artifacts, actors, and workflows. In RUP, a best practice is a way to
address an activity of the software process which is tested in real contexts. RUP practi-
ce runs on the dynamic dimension and includes elements of the static dimension [24].

Eclipse Process Framework Composer (EPFC) is a tool for software process manage-
ment in organizations. EPFC allows for defining processes by using software practices
integrated in methods. EPFC defines practice as a documented approach for solving
one or more recurrent problems. Practice in EPFC is associated with work products
generating practices; tasks defining the steps of practice development; guidelines in-
dicating the way of applying the practice and the roles played by participants in the
practice [25].

Some other work incorporates elements according to the research interest to the soft-
ware practice concept: Barón [27] presents the software practice as an asset of knowled-

254 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

ge; García et al. [28] promote the use of software patterns; Zhang et al. [29] suggest the
application of simulation processes; Torkar et al. [30] present strategies to adopt indus-
try practices, techniques and methods of open source software; Meso and Jain [31] pre-
sent a set of principles and best practices for adaptive systems, from the perspective of
agile software development.

4.	 Methodological approach for creating
conceptual syntheses

The SLR process of Kitchenham and Charters [8] is the basis of the methodological ap-
proach for the development of our conceptual synthesis. Phases of the methodological
approach [26] are shown in Figure 7.

4.1.1	 Planning phase

Activity spaces, activities and work products of the planning phase are shown in Figure 8.

1.	 Identification of the needs of the conceptual synthesis

The need for an SLR arises from the researcher requirements to summarize all existing
information on a phenomenon thoroughly and impartially [26].

Planning
<Phase>

Realization
<Phase>

Reporting
<Phase>

Figure 7. Phases of the methodological strategy.

Contains

Planning
<Phase>

need for
the

conceptual
synthesis

Identification of the
needs for the conceptual
synthesis

Understand Stakeholder
Needs

Research
question(s)

Understand the
Requirements

Specification of the
research questions

Protocol
methods

Developement of the
protocol

Protocol
report

Evaluation of the
protocol

Figure 8. Planning phase.

255CHAPTER # 14 - CONCEPTUAL SYNTHESIS OF PRACTICE AS A THEORETICAL CONSTRUCT IN SOFTWARE ENGINEERING

2.	 Hiring the review

Sometimes, an organization requires information about a specific topic, but the or-
ganization lacks the time or the expertise to perform an SLR. In such cases, the or-
ganization engages the services of researchers to conduct the study. In this regard,
representatives of the organization and researchers need to define the requirements
of the SLR [26].

3.	 Specification of the research questions

Questions guide the search for activities of primary studies by using extraction and
synthesis of information to answer the questions [26].

4.	 Development of the protocol

During the development of the protocol, researchers specify the methods to be used
to conduct an SLR. The protocol should specify methods to ensure a thorough and
impartial SLR. [26].

5.	 Evaluation of the protocol

The protocol is a critical element of any SLR. Researchers should agree on a proce-
dure for evaluating the protocol [8]. For the development of conceptual syntheses in
software engineering, the strategy proposes the implementation of the protocol to a
sample of relevant papers [26].

4.1.2	 Realization phase

Activity spaces, activities and work products of the realization phase are shown in
Figure 9.

1.	 Identification of the research.

A thorough and impartial search strategy is required to find the greatest number of
primary studies related to the research questions [8]. The methodological approach
is intended to specify search strings for identifying the research. Search strings are
configurations describing the research questions. Such strings are the criteria ente-
red in the search engines of digital sources [26].

256 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Realization
<Phase>

Search
stringsContains

primary
studies

primary
studies (2)

Documentary
analysis formatExtraction of information

Assessment of study
quality

Identification of research

Selection of primary
studies

terminological
unification

format
Synthesis of information

Implement the System

pre-
conceptual

schema

pre-
conceptual

schema

Shape the system

Figure 9. Realization phase.

2.	 Selection of primary studies

This activity is aimed to select the actual relevant studies contributing to answer the
research questions [8].

a.	 Identification of the sources of studies

The sources of the state of the art about the research topic are determined at this
point. Currently, digital sources are frequently used as repositories of relevant studies.
Also, some studies recognized by the community should be included, even though they
can be excluded by digital sources [26].

b.	 Selection of studies

Some studies are evaluated based on their actual relevance by using search strings
in digital sources. The selection criteria are used to identify studies that provide di-
rect evidence on the research question. The selection criteria are defined according
to the research question [8]. We use in our methodological approach the use of in-
clusion and exclusion criteria as proposed by Kitchenham and Charters [8]. Inclusion
criteria allow for identifying the relevant state of the art of the study, while exclu-
sion criteria allow for identifying irrelevant studies to be omitted [26]. This process
is performed in two iterations including: i) the title of the study and ii) the abstract
and the keywords.

257CHAPTER # 14 - CONCEPTUAL SYNTHESIS OF PRACTICE AS A THEORETICAL CONSTRUCT IN SOFTWARE ENGINEERING

3.	 Assessment of study quality

Additional criteria for assessing the quality of primary studies should be considered [8].
We propose some activities after extracting and synthesizing the information in order
to gain a more detailed view of the study. This detailed view allows researchers for de-
termining the inclusion or exclusion of the final concepts to the synthesis. In our case,
such criteria are applied as additional filters to avoid bias and ensure the inclusion of
actually relevant studies [26].

4.	 Extraction of information

This phase is aimed to design data extraction forms to accurately record the informa-
tion the researchers obtained from the selected studies [8]. In our approach, each of
the relevant studies is subjected to a process of analysis. The analytical products of the
study are the terminological unification and the pre-conceptual schema. Terminological
unification is related to the integration of the terms referred to the same concept in a
common term; on the other hand, a pre-conceptual schema summarizes how the study
defines the theoretical construct of software practice [26].

5.	 Synthesis of information

In this phase we integrate and summarize the results of the relevant studies. The synthe-
sis can be descriptive and supplemented with a quantitative summary [8]. In our ap-
proach, inputs are the formats of documentary analysis of relevant studies. Terminolo-
gical unification is consolidated by using such inputs and the pre-conceptual schema
is drawn as a preliminary version of the theoretical construct of software practice [26].

4.1.3	 Reporting phase

In this final phase of an SLR, we write the results of the review and communicate the
results to the community concerned. [8]. Activity spaces, activities and work products of
the report phase are shown in Figure 10 [26].

Reporting
<Phase>

Technical
research

report
Contains

Report
format

submission

Evaluating the report

Specifying diffusion
mechanisms

 Formatting the main
report

PublicationDeploy the System

Evaluation
report

Figure 10. Reporting phase.

258 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

1.	 Specifying diffusion mechanism

Diffusion of the results of an SLR should be effective. For this reason, most guidelines
recommend planning strategy for the diffusion [8]. In our approach we suggest spe-
cifying communication media according to the specificity of the conceptual synthesis
[26].

2.	 Formatting the main report

Typically, communication media constrain format and length report. However, some
structure and scope of the report are suggested in order to ensure efficiency of com-
munication to the community concerned [8]. In our approach we use some formats of
the guide [8] and the formats established in journals and academic events, in which the
results of the conceptual synthesis should be presented [26].

3.	 Evaluating the report

The Main report is evaluated according to the communication media. A paper submitted
to a journal or an event is evaluated by scientific committees and the target community
in terms of rigor and validity of the SLR. When the report is part of a Ph.D. Thesis, the SRL
is evaluated in the overall evaluation of the research project [8].

5.	 Conceptual synthesis of the software
practice

5.1	 In this Section we apply our approach to the
theoretical construct of practice in software
engineering.

5.1.1	 Planning phase

Identification of the needs of the conceptual synthesis

We justify the conceptual synthesis of the theoretical construct of practice in software
engineering as follows: the conceptual synthesis aims to identify common aspects in the
definition of the theoretical construct of practice within the context of software enginee-
ring. The results will be the input for characterizing the theoretical construct, and they
will be the input for formulating a unified definition. This definition is a contribution to

259CHAPTER # 14 - CONCEPTUAL SYNTHESIS OF PRACTICE AS A THEORETICAL CONSTRUCT IN SOFTWARE ENGINEERING

achieve one of the goals of the Semat initiative: defining an adequate and widely accep-
ted theoretical basis for software engineering.

5.1.2	 Hiring review

Conceptual synthesis of the theoretical construct of software practice is the input for the
development of future research, and especially for the construction of a unified defini-
tion. Researchers interested have the expertise required to conduct the study; therefore,
we need no contracts to develop the conceptual synthesis.

5.1.3	 Specification of the research questions

The research question is: How the software engineering proposals define the theoretical
construct of practice?

5.1.4	 Development of the protocol

The methods of the strategy for the development of conceptual synthesis are defined
and applied according to the SLR process.

5.1.5	 Evaluation of the protocol

In the case of the theoretical construct of software engineering practice, the protocol
was applied to Kuali Beh [5] and CMMI-DEV [22]. Such samples allow for adjusting the
protocol to subsequent application to the universe of the relevant state of the art.

5.2	 Realization phase

5.2.1	 Identification of the research

Search strings defined in the case of the conceptual synthesis construct of practice are
shown in Figure 11.

String 1: “Software practice” or “software development practice” or “Software enginee-
ring practice”

String 2: “Software method” or “software development method” or “Software enginee-
ring method”

260 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

String 3 “Software Theory” or “software development theory” or “Software engineering
theory”

Figure 11. Search strings

5.2.2	 Selection of primary studies

a.	 Identification of sources of studies

The search for the state of the art about the theoretical construct of practice in software
engineering is done by using digital sources, such as: ACM Digital Library [23], EBSCO [24],
Engineering Village [25], IEEE Xplore Digital Library [26], ScienceDirect [27], Scopus [28]
and Web of science [29]. Similarly, some other studies are recognized by the software
engineering community and digital sources and included in this identification process.
The results of this exercise are shown in Table 1.

Table 1. Search results in digital sources

Source of studies
Selected studies

String 1 String 2 String 3 Total

ACM Digital Library 139 64 8 211

EBSCO 78 73 2 153

Engineering Village 166 235 52 453

IEE Xplore Digital Library 101 81 21 203

ScienceDirect 54 113 10 177

Scopus 491 716 84 1291

Web of Science 37 61 8 106

Total 1066 1343 185 2594

b.	 Selection of studies

Inclusion criteria of the conceptual synthesis of the theoretical construct of software
practice are studies related to software engineering practices, software engineering

261CHAPTER # 14 - CONCEPTUAL SYNTHESIS OF PRACTICE AS A THEORETICAL CONSTRUCT IN SOFTWARE ENGINEERING

methods, and software engineering theories. Exclusion criteria used in the concep-
tual synthesis of the theoretical construct of software practice are studies related to
teaching practices, teaching methods, and theories of other disciplines than software
engineering.

This process is performed in two iterations considering: i) the title of the study; and ii)
abstract and keywords. The results of applying the inclusion and exclusion criteria are
shown in Table 2.

Table 2. Results of the application of the inclusion/exclusion criteria

Source of studies
Selected studies

String 1 String 2 String 3 Total

ACM Digital Library 11 4 1 16

EBSCO 6 1 0 7

Engineering Village 18 21 10 49

IEE Xplore Digital Library 12 8 4 24

ScienceDirect 10 8 3 21

Scopus 60 64 12 136

Web of Science 9 7 1 17

Total 126 113 31 270

5.2.3	 Assessment of study quality

In our case, such criteria are applied as additional filters to avoid bias and ensure the
inclusion of actually relevant studies.

5.2.4	 Extraction of information

Examples of pre-conceptual schemas resulting from the extraction of information are
presented in Figures 12 and 13.

5.2.5	 Synthesis of information

We include some proposals in the conceptual synthesis for establishing a preliminary
version of the definition of the theoretical construct of software practice. This prelimi-
nary version integrates four views: static, operational, human, and management view.
Overview and views are shown in Figures 14 to 18.

262 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

5.3	 Reporting phase

5.3.1	 Specifying diffusion mechanisms

In this case, the conceptual synthesis is written as a technical research report and as
a Section of a Ph.D. Thesis. Diffusion is done by submitting papers to journals, and the
development of presentations in academic events related to software engineering.

5.3.2	 Formatting the main report

The methodological strategy suggests using some formats of the guide [8] and the for-
mats established in publications and academic events, which present the results of the
conceptual synthesis.

5.3.3	 Evaluating the report

The conceptual synthesis of the theoretical construct of practice is part of a Ph.D. Thesis.
Therefore, the software engineering community—including the academic research pro-
cess and events—is in charge of evaluating the results.

6.	 Conclusions and future work

In this Chapter we proposed to the academic community a methodological approach
for the development of conceptual synthesis in software engineering and we applied it
to the theoretical construct of software practice. Kitchenham and Charters [8] propose
to use an SLR as a guide for defining the methodological strategy, since they provide
the process and the appropriate methods for conceptual synthesis. The exercise allows
for demonstrating the benefits of scalability, flexibility and adaptation of the proposal
by Kitchenham and Charters [8]; in addition, we incorporate pre-conceptual schemas
to the synthesis in order to guide the terminological unification. The application of the
methodological approach to the theoretical construct of practice eased the identifica-
tion, collection, and analysis of the relevant state of the art about the subject. Rigor
in the implementation of the methodological approach to the theoretical construct of
practice ensures the results are valid basis for summarizing a definition the software
engineering community could accept and share. On the other hand, a pre-conceptual
schema is an efficient mechanism for extracting and synthesizing information from stu-
dies identified as relevant, since it is suitable for representing the terminology of a
domain. As a feedback and improving mechanism of the methodological approach, we
propose to be applied to the development of conceptual synthesis in other areas than

263CHAPTER # 14 - CONCEPTUAL SYNTHESIS OF PRACTICE AS A THEORETICAL CONSTRUCT IN SOFTWARE ENGINEERING

software engineering. Likewise, we can use the results of this conceptual synthesis in the
following stages we project for reaching a unified definition of the theoretical construct
of software practice.

Figure 12. Pre-conceptual schema result of the information extraction from Kuali-Beh [5]

Figure 13. Pre-conceptual schema result of the information extraction from CMMI [22]

264 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Figure 14. A Preliminary version of the definition of practice.

Figure 15. Static view.

Figure 16. Operational view.

265CHAPTER # 14 - CONCEPTUAL SYNTHESIS OF PRACTICE AS A THEORETICAL CONSTRUCT IN SOFTWARE ENGINEERING

Figure 17. Human view.

Figure 18. Management view.

7.	 References

[1]	 I. Jacobson, Pan-Wei Ng, P. E. McMahon, I. Spence, and S. Lidman, “The Essence of
Software Engineering: The SEMAT Kernel,” Commun. ACM, vol. 55, no. 12, pp. 42–49,
Dec. 2012.

[2]	 B. C. E. Cengiz Erbas, “Modules and transactions: Building blocks for a theory of soft-
ware engineering,” Sci. Comput. Program. vol. 101, pp. 6-20, Ap. 2015.

[3]	 P. Johnson and M. Ekstedt, “In search of a unified theory of software engineering,”
in International Conference on Software Engineering Advances ICSEA 2007, Cap Es-
terel, France, 2007, pp. 1–1.

266 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

[4]	 D. Kirk and E. Tempero, “A lightweight framework for describing software practices,”
J. Syst. Softw., vol. 85, no. 3, pp. 582–595, Mar. 2012.

[5]	 Object Management Group, “Kernel and Language for Software Engineering Methods
(Essence)-Version 1.1,” Object Manag. Group, Feb, 2015.

[6]	 C. Passos, D. S. Cruzes, T. Dyba, and M. Mendonca, “Challenges of applying ethnogra-
phy to study software practices.,” in Proceedings of the 2012 ACM-IEEE International
Symposium on Empirical Software Engineering & Measurement, Ipswich, Massa-
chusetts, 2012, p. 9.

[7]	 B. Rolandsson, M. Bergquist, and J. Ljungberg, “Open Source in the Firm: Opening Up
Professional Practices of Software Development,” Res. Policy, Göteborg, Sweden, vol.
40, no. 4, pp. 576–587, May 2011.

[8]	 B. Kitchenham and S. Charters, “Guidelines for performing systematic literature re-
views in software engineering, EBSE” Durham, UK, Tec. Rep, EBSE-2007-01, Jul. 2007.
B. Kitchenham and P. Brereton, “A systematic review of systematic review process
research in software engineering,” Inf. Softw. Technol., vol. 55, no. 12, pp. 2049–2075,
Dec. 2013.

[9]	 C. Zapata, A. Gelbukh, and F. Isaza, “Pre-conceptual schema: A conceptual-graph-
like knowledge representation for requirements elicitation,” MICAI 2006 Adv. Artif.
Intell, vol 4293, Apizaco, Mexico, pp. 27–37, 2006.

[10]	 I. Jacobson, I. Spence, P. Johnson, and M. Kajko-Mattsson, “The Essence of Software
Engineering The SEMAT Approach,” in Proceedings of the 27th IEEE/ACM Internatio-
nal Conference on Automated Software Engineering, 2012, pp. 15–19.

[11]	 “Welcome - SEMAT.” [Online]. Available: http://semat.org/. [Accessed: 19-Mar-2016].
[12]	 G. W. Suter, “Review papers are important and worth writing: Review papers are im-

portant,” Environ. Toxicol. Chem., vol. 32, no. 9, pp. 1929–1930, Sep. 2013.
[13]	 P. Lenberg, R. Feldt, and L. G. Wallgren, “Behavioral software engineering: A defini-

tion and systematic literature review,” J. Syst. Softw., vol. 107, pp. 15–37, Sep. 2015.
[14]	 F. Selleri Silva, F. Soares, A. L. Peres, I. M. de Azevedo, A. Vasconcelos, F. K. Kamei, and

S. R. de L. Meira, “Using CMMI together with agile software development: A systema-
tic review,” Inf. Softw. Technol., vol. 58, pp. 20–43, Feb. 2015.

[15]	 M. Zarour, A. Abran, J.-M. Desharnais, and A. Alarifi, “An investigation into the best
practices for the successful design and implementation of lightweight software
process assessment methods: A systematic literature review,” J. Syst. Softw., vol. 101,
pp. 180–192, Mar. 2015.

[16]	 H. Zhang and M. Ali Babar, “Systematic reviews in software engineering: An empiri-
cal investigation,” Inf. Softw. Technol., vol. 55, no. 7, pp. 1341–1354, Jul. 2013.

[17]	 D. Heaton and J. C. Carver, “Claims about the use of software engineering practices
in science: A systematic literature review,” Inf. Softw. Technol., vol. 67, pp. 207–219,
Nov. 2015.

267CHAPTER # 14 - CONCEPTUAL SYNTHESIS OF PRACTICE AS A THEORETICAL CONSTRUCT IN SOFTWARE ENGINEERING

[18]	 P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil, “Lessons from
applying the systematic literature review process within the software engineering
domain,” J. Syst. Softw., vol. 80, no. 4, pp. 571–583, Apr. 2007

[19]	 B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman,
“Systematic literature reviews in software engineering – A systematic literature re-
view,” Inf. Softw. Technol., vol. 51, no. 1, pp. 7–15, Jan. 2009.

[20]	 C. P. Carnegie Mellon University, “CMMI® para Desarrollo, Versión 1.3,” 2010.
[21]	 SCRUM Study, A Guide to the SCRUM BODY OF KNOWLEDGE. VMEdu, Inc., 2013.
[22]	 P. Kruchten, The rational unified process : an introduction, 3rd ed. Boston: Addison

Wesley, 2003.
[23]	 Rational Software Company. Rational Unified Process: Best Practices for Software

Development Teams. Lexington, 2005.
[24]	 The Eclipse Foundation, “Eclipse Process Framework Project (EPF),” 2014. [Online].

Available: https://eclipse.org/epf/. [Accessed: 24-Feb-2016].
[25]	 Zapata-Jaramillo C.M. Barón-Salazar A. A. “Estrategia Metodológica para la Elabora-

ción de Síntesis Conceptuales en Ingeniería de Software: una Aplicación al Caso del
Constructo Teórico de Práctica.,” in Proceedings of the 4th International Conference
in Software Engineering Research and Innovation, Puebla, Puebla, México 2016.

[26]	 Carnegie Mellon University, “CMMI® for Development, Version 1.3,” Nov 2010. (27)
[27]	 ACM Digital Library. (2015, Jun), [Online]. Available: http://dl.acm.org/
[28]	 EBSCO, http://eds.a.ebscohost.com.
[29]	 Engineering Village. (2015, Jun), [Online]. Available: https://www.engineeringvillage.com/
[30]	 IEEE Xplore Digital Library, (2015, Jun). [Online]. Available: http://ieeexplore.ieee.

org/Xplore/home.jsp
[31]	 ScienceDirect, (2015, Jun). [Online]. Available: http://www.sciencedirect.com/
[32]	 Scopus, (2015, Jun). [Online]. Available: http://www-scopus-com.
[33]	 Web of science, (2015, Jun). [Online]. Available: http://thomsonreuters.com/en/pro-

ducts-services/scholarly-scientific-research/scholarly-search-and-discovery/web-
of-science.html

268

1.	 Introduction

Collaborative application (also known as Groupware) is a computer-based system that
supports groups of people engaged in a common task (or goal) and provides an interface
to a shared environment [1]. This means having to promote communication, coordina-
tion, and collaboration among the group, providing network protocols and organizatio-
nal structures, as well as synchronization (notification and concurrency), access control,
workflow, and shared workspace mechanisms. This requires specific models to support
the development process of collaborative applications, which on the one hand provide
all the elements required for carrying out this process, while on the other hand it guides
the developer in a natural, easy, and flexible manner through each stage of this process.

One of the most recognized architectural patterns is the Model-View-Controller (MVC).
The MVC [2, 3] architectural pattern provides a template that serves as a guideline to
analyze, design, and implement a software project; establishing a set of recommenda-
tions to facilitate this process of software development. In the collaborative applications
domain, MVC has been used to manage the interaction among user’s groups.

Consequently, in this chapter an MVC architectural pattern for developing collaborative
applications is presented, in which each of the parts (Model, View, and Controller) is
constituted by items that characterize this kind of applications. These items are extrac-
ted and inferred from the analysis on various works [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, and 18] existing in the literature about this development. In order to perform this de-

Chapter # 15
Facilitating the development of
Collaborative Applications with
the MVC Architectural Pattern

Mario Anzures-García, Luz A.
Sánchez-Gálvez
Facultad de Ciencias de la Computación,
BUAP, Puebla, México
{mario.anzures, sanchez.galvez}@correo.
buap.mx

Miguel J. Hornos, and Patricia
Paderewski-Rodríguez
ETSIIT, Universidad de Granada
Granada, Spain
{mhornos,patricia}@ugr.es

269CHAPTER # 15 - FACILITATING THE DEVELOPMENT OF COLLABORATIVE APPLICATIONS WITH THE MVC ARCHITECTURAL PATTERN

velopment, the items were settled into templates which will be the guidelines to identify
the requirements of collaborative applications, in a natural, clear, and flexible manner.
This proposal offers a way to simplify the development of collaborative applications;
providing the necessary flexibility and responsiveness to adjust to the changing needs
within the group.

Furthermore, this document is an extended version of the chapter presented in [19], in
which the state of the art, corresponding to the MVC architectural pattern, and the co-
llaborative applications, has been reduced. So as also, a template and several figures
have been added in order to further explain the importance of the Templates (which are
derived from the MVC proposal) in the development of such applications.

The chapter is organized as follows. The MVC architectural pattern is briefly discussed
Section 2. The state of art about the development of collaborative applications is outli-
ned in Section 3. The MVC architectural pattern and templates to guide this development
are shown in Section 4. A case study is unfolded in Section 5. Finally, conclusions and
future works are given in Section 6.

2.	 MVC architectural pattern

The concept of design patterns was settled in the seventies by Alexander and his co-
lleagues [20, 21, and 22] in order to preserve the fundamentals concepts of architecture
within the new modernist tradition. Every pattern describes a recurring problem, its
context, the forces that are at play in the situation, and a solution to the problem. The
feature that solves the problem is written in a generic but concrete form, so it can be de-
signed in an unlimited number of ways while still being readily identifiable [21]. So, the
design patterns provide: techniques proven that reflect the experience and insights the
developers; solutions adapted for suiting our own needs; and expressiveness required
to present complex solutions in a simple way.

An architectural pattern captures the essence of a successful solution to commonly
occurring problems in software design. Thus, a pattern can be seen as a clear and ge-
neric set of instructions, ensuring to use a solution that has been proven in countless
software design problems with excellent results, allowing customize the pattern to solve
specific problems. The importance in the architectural pattern approach is its potential
to bridge the gap between high-level requirements and design. So the architectural pat-
terns may be used during requirements elicitation to determinate the necessary items
to develop software and how these are applied to the pattern [22]. They can also advise
the design process and aid designers with the development of prototypes.

270 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

MVC is an architectural pattern that encourages an improved application organization
through a separation of concerns. This pattern was originally designed by Trygve Re-
enskaug during his time working on Smalltalk-80, where it was initially called Model-
View-Controller-Editor [2]. MVC is created to reduce the cost and improve the quality of
software in the object-oriented paradigm. MVC improves modularity by encapsulating
volatile implementation details behind stable interfaces that reduce the effort required
to understand and maintain existing software.

The Model represents the knowledge domain of the application; characterizing unique
forms of data in an application. When a model changes (it is updated or modified), it
will typically notify its views (observers) that a change has occurred, so that they may
react suitably. View is a (visual) representation of its model. It would ordinarily highlight
certain attributes in the model and suppress others. A view typically has associated a
model and is notified when the model (or a part of it) changes, allowing the view to up-
date itself accordingly. All these notifications must be in the model terminology. Users
are able to interact with views, and this includes the capacity to access and modify the
model. Controller is the link between a user and the application. It provides the user with
input by arranging for relevant views to present themselves in suitable places on the
screen. It receives user output, translates it into the appropriate messages and passes
these messages to one or more views.

Some examples of using MVC in collaborative applications, are: Groupkit [4, 5] —tool-
kit— and CLOCK [6] — architectural model— using MVC to support real-time, distance
collaborative work; AORTA (Action-oriented decoupled architecture for Coordination and
Awareness) [7], which follow replicated or MVC hybrid variants for integrating new com-
ponents; and two applications to solve specific problems, such as [8] and [9] that are
based on MVC for managing content on the cloud, and creating collaborative framework
of the test set, correspondingly.

In summary, these jobs use the MVC for supporting the users’ interaction based on data
structures or documents. However, they not use MVC to develop a collaborative applica-
tion, let alone providing a set of items for each component of the model, as in this chap-
ter. In addition, some templates are proposed to simplify this development.

3.	 State of the art about collaborative
applications

Nowadays, the collaborative work is a tool to integrate the work group -whose members
are not physically in the same place- and require creating (conceptual) products or ser-

271CHAPTER # 15 - FACILITATING THE DEVELOPMENT OF COLLABORATIVE APPLICATIONS WITH THE MVC ARCHITECTURAL PATTERN

vices. The use of such tools has increased, as they facilitate the communication, coor-
dination, and collaboration of researchers and/or stakeholders. However, it is neces-
sary to model the process of these tools’ development by means of formalisms, which
substantiate the communication, both synchronous and asynchronous, the interaction
among members, and between the latter and the application, the integration among its
components and the whole process development. Besides, these formalisms must be
presented in a natural, clear manner, being that they function as guidelines to simplify
this process.

Many fields of science make use of formalisms, such as theories, rules, patterns,
methodologies, and methods to precisely predict outcomes given certain inputs, and to
explain some phenomena of the universe [23]. In the engineering software [24] as well as
in the collaborative domain, AMENITIES (a methodology for analysis and design of coo-
perative systems) [10], and [11] to support the process of collaborative applications de-
velopment; CIAM (Collaborative Interactive Applications Methodology) [12], and TOUCHE
(Task-Oriented and User Centered process model for developing interfaces for Human-
Computer-Human Environments) [13], to manage the interaction among the users; some
samples have been presented. Three of these jobs by using notations based on UML, and
AMENITIES by an extension named COMO-UML. In addition, works using notations of mo-
dels [14, 15, 16, and 17], and meta-models [18] have also been exposed. In which different
concepts, and ideas have been used to the design and carry out construction processes
of new collaborative applications. Examples of concepts are: group, role, actor, task (se-
quential, parallel, additive concurrent, and fully concurrent), activity, resource, session
management policy, session, notification, group awareness, group memory, concurrency,
shared user interface, stage, task precedence, division of labor, coordination at activity-
level and at object-level, information view, participant view, context view.

In conclusion, the aforementioned theories, models, and methodologies provide a set
of essentials concepts for developing a collaborative application. Some of these con-
cepts are even considered in the proposal for this article. Moreover, these jobs are
sustained with notations by using models, UML, or variants of it. However, neither of
the jobs mentioned above supplies a structure to assemble the concepts (which would
facilitate the building of a collaborative application), nor it gives any guidelines to rule
and simplify the work of software developers. On the other hand, these formalisms
cannot be considered formal, but informal. In this chapter, the concepts are grouped
in three parts (Model-View-Controller) so reducing the developing time and cost of a
collaborative application. The templates are derived from these groupings for guiding
the developers in such a way that the building of this kind of applications is simplified.
What is more, the Model is based on an ontology that specifies the group organizatio-

272 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

nal structure (which defines the policy based on a division of labor, taking into account
the roles the users may play) allowing the evolution, reuse and adaptation of collabo-
rative applications, because ontology can be adjusted by adding concepts, relations,
and instances. The ontology is a notation that supplies a (well defined), common and
shared vocabulary, which provides a set of terms, relations, and rules for describing
this domain in a formal way.

4.	 MVC based-development of collaborative
applications

In this chapter, the MVC design patter has been chosen for four reasons:

1.	 It allows separating the development of collaborative applications in three
components, where each one plays its own separate role, making the applica-
tion to work appropriately. This separation facilitates the reuse of the model
by several user interfaces, and it organizes the development of an application
in a structured way.

2.	 It is used in the object-oriented analysis and design; therefore, it can be
applied in the requirement analysis and design of software.

3.	 It is ideal for building collaborative applications, because it reduces the time,
effort and cost of this process.

4.	 It enables to reuse the pattern components, since these are designed
independently.

The items of each component of the MVC architectural pattern are derived from the
studies performed in [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, and 18], as well as from the
ideas and concepts analyzed in the previous sections:

•• The model of objects, coordination, and user interface must be specified to develop
collaborative applications.

•• Events allow triggering tasks.

•• Tasks, activities and actions are the medium to achieve a common goal.

•• The task precedence must be established in the collaborative applications.

•• A task flow must be created; therefore, a workflow is recommended, since it coordi-
nates the execution of multiple tasks or operations along the development process.

273CHAPTER # 15 - FACILITATING THE DEVELOPMENT OF COLLABORATIVE APPLICATIONS WITH THE MVC ARCHITECTURAL PATTERN

For this reason, the tasks must be placed in a Template, then; the dependencies
between these must be established by a task flow; finally, a coordination mecha-
nism must be created and related to each task.

•• Tasks can be executed into stages (when it comes to developing complex collabora-
tive applications). These must be monitored to know the state of each task.

•• The task structure requires to establish an organizational structure, which allows
to define a division of labor in accordance with the changing needs of the group
and the application.

•• Two coordination levels must be considered: activity-level and object-level.

•• Three access types to the objects or resources are considered: parallel, additive
concurrent, and fully concurrent.

•• A notification mechanism must be provided to update the objects being accessed,
and a concurrency one, to avoid the simultaneous modification of the same object.

•• The context of every activity is essential to the work environment for it is necessary
to take into account the activities’ internal and external resources.

•• The user interfaces can be determined by identifying the resources and the users’
roles involved.

•• In collaborative applications, three kinds of user interfaces such as information
view —showing objects—; participant view —group awareness—; and context view
—group memory—; can be considered.

In the next subsections, the items for the Model, View, and the Controller will be defined.

4.1	 Model items

Model of the MVC architectural pattern contains the data required for developing colla-
borative applications in a suitable way. Therefore, in this chapter, the Model will specify
the items of the group organizational structure, which is founded on the ontology mo-
deling the session management policies [25, and 26]. This ontology coordinates and ad-
justs the collaborative applications in accordance to its changing needs. This structure
defines the policy based division-labor considering the roles the users can play.

This ontology that establishes the Group Organizational Structure (see the yellow rec-
tangles in in Figure 1) is governed by a specific policy which determines how the group

274 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

is organized. This structure is made up of users. Policy; it defines a configuration of the
group organizational structure in accordance with each role established. Users; they
can be people, either individuals or in groups, although they may also refer to systems
playing one or more of the established roles. Role; it is responsible for the tasks that
users can perform and it provides a set of access rights —related to its status— on the
shared resources used to carry out the activities. Status; it describes the role hierarchy,
i.e. it founds the role priority in the group. Task; it is made up of one or more activities,
allowing users to achieve a given goal in a certain period of time. Activities; these are
actions that allow a role to execute a set of operations. Shared Resource; it represents
the resources used to carry out the activities.

In this chapter, the group organizational structure is extended (see the green rectangles
in Figure 1) to supply coordination on activity-level and object-level. In the former, the
Events, and the task sequence are added; one for triggering each task, and another one
to manage them. Furthermore, the inclusion of the Stage facilitates the tasks’ sequence,
since one set of tasks is defined by it, as well as the order that they may have. In the
latter, three types of tasks are aggregated: The Sequential-Task to access to different ob-
jects; the Parallel-Task to manage the same parallel object; and the Concurrent-Task to
use a unique object concurrently. Therefore, a notification mechanism should be provi-
ded for the three tasks, and a concurrency one for managing the third task.

Task
Precedence

Resource

Group
Organizational

Structure

Status Right/
Obligation

User

Task

Policy Role

Activity

Event

Stage

sequentialsequential paralel concurrent

Figure 1. Model items to build a collaborative application.

275CHAPTER # 15 - FACILITATING THE DEVELOPMENT OF COLLABORATIVE APPLICATIONS WITH THE MVC ARCHITECTURAL PATTERN

The group organizational structure outlines a particular style for carrying out group work
in accordance with every item that composes it. However, collaborative application re-
quires supporting different styles. For this reason, the group organizational structure
extended is an ontological model, which supplies the flexibility necessary in order to
adapt the group to new organizational structures by simply adding new instances to the
ontology, for evolving this structure changing, adding, or removing both concepts and
relationships between themselves.

In addition, the Task Precedence is characterized by a workflow. Consequently, this
workflow will represent any set of tasks —along with their order of execution— perfor-
med by different roles for achieving a common goal. Stage concept has been added
to simplify the users’ access to shared workspace, considering that the users only are
admitted on certain collaboration moments, when they must carry out a task. Both the
phase and the workflow are ideal for controlling the activity-level coordination.

4.2	 View items

Views are user interfaces that show the resources and the interaction among users, and
between them and the application. The session is provided through the views, allowing
the users to interact with the application. The controller manages the information of the
model to generate the appropriate view; thus, several views can be created by a same
model. In the case of collaborative applications, three views are considered (see Figure
2): The Information View (IV), the Participant View (PV), and the Context View (CV).

User Interface

sequentialInformation
View

Participant
View sequentialContext

View

Figure 2. View items to develop a collaborative application.

The Information View allows seeing all the information that helps the user to interact
with the collaborative application; for this reason, it displays all the tasks performed by
one or several roles over resources and where other users have no involvement. This
view shows modifications related to sequential-task.

The Participant View allows each user to be aware of what other’s users are doing, and the-
refore they know what happens in the shared workspace, since the group is (generally) dis-
tributed in different geographical locations, working through the computer. Consequently,

276 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

this view provides group awareness through views showing the notifications of the distinct
changes produced by other group users, who are participating; hence, the name of “parti-
cipant view”. Collaborative application supplies widgets to show other users all that is hap-
pening in the application. Every collaborative activity triggers a notification, which sends
messages to update the views, concerning the modification of the resource, promoting
greater cooperation and interaction among users in different collaborative tasks. To do
this, concurrency is used, for it helps to manage the permissions assigned to users, in or-
der to make use of shared resources; thus ensuring the mutually exclusive use thereof. The
modifications carried out by parallel-tasks and concurrent-tasks are displayed in this view.

The Context View represents the common workspace where all information of shared
resources is shown; this view is named memory or history group. It displays the coope-
rative activities of the group, this was created to provide understanding and reasoning
about the collaborative process unfold, towards making an accurate monitoring. Fur-
thermore, it is related to the notification; allowing to store, collect, and distribute infor-
mation by supporting the group knowledge representation, in a structural, dynamical
manner. Group memory is generated to store the information of the shared resources
used and the activities performed by each role involved in the collaborative application.
This view exhibits the changes implemented by parallel-task and concurrent-task.

User interface can display three, two, or one view, in accordance with the executed task, sin-
ce a task can determine the type of coordination (activity-level or object-level) to execute.

4.3	 Controller items

The Controller manages and updates the views appropriately in accordance with the
shared resources modification of the model, which results from the users’ interaction. In
the collaborative applications, the interaction is carried out during the session, and the
user interfaces (that compose the same) display the changes of the model. The contro-
ller operates the notification mechanism, updating the information view for the case of
a sequential-task, as well as the participant view, and the context view, when a parallel-
task or concurrent-task is produced. In the latter case, the concurrency mechanism is
also activated. This mechanism avoids conflicts when a resource is being used by seve-
ral participants, which is based on the organizational structure extended (see Figure 3).

The Session establishes a shared workspace, where a group of people sharing a common
interest will work, it supplies a session management mechanism to control and hand-
le sessions through a user interface, by which users establish a connection; that is, for
users to join, leave, invite someone to, and exclude somebody from a session. Generally,

277CHAPTER # 15 - FACILITATING THE DEVELOPMENT OF COLLABORATIVE APPLICATIONS WITH THE MVC ARCHITECTURAL PATTERN

this mechanism specifies how the group will be organized. Nowadays, the session ma-
nagement is uncoupled to the group organizational structure, since the session is imple-
mented with the methods or functions provided by the framework or the programming
language used, and the organizational structure is performed by the developer.

SESSION

Notification Concurrency

Figure 3. Controller items to create a collaborative application.

A notification occurs when one or all the shared resources are modified in order to keep
the views updated. The notification must provide information regarding the events in a
session related to a user, a subset of users, or an entire group. This is essential to coor-
dinate the users’ activities, and it provides the group awareness, i.e. a user knows what
others are doing in a shared workspace through events or widgets presented in the user
interface. In addition, each event that occurs can be stored and displayed in the context
view, generating group memory.

The concurrency determines in what way the participants in a session contribute, pro-
viding dynamically-generated temporary access and manipulation permissions for co-
llaborating users, in order to reduce competition conditions and to guarantee mutually
exclusive resource usage. The permissions are granted to users depending on the roles
that they play; in such a way, these permissions specify which users can send, receive or
manipulate shared data at a given stage.

Notification and concurrency, control the interaction occurred during the session and
adapt the corresponding views in accordance with the type of the executed task. Fur-
thermore, these mechanisms must be implemented in each function or method that re-
presents a task. The adaptation is accomplished through the notification, and controlled
by concurrency, in order to adjust views in agreement with the performed interaction.
As mentioned above, the adaptation can be applied if new instances are created on the
ontology, or even when new concepts and/or relations are also added.

Once each of the items has been allocated in the three layers, the MVC architectural pat-
tern (see Figure 4) to develop collaborative applications is ready for usage. However, it can
be difficult for inexpert people in this domain, to create software with the MVC pattern
shown in the Figure 4. Thus, three Templates (one for each MVC component) are derived of
the MCV in order to simplify and facilitate the development of the collaborative applica-

278 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

tions. Since the developer must only specify and place the elements (ontology instances)
in each Template column (item). The columns from each Template will be the items of the
Model, the View, and the Controller; except for the items called Group Structure Organi-
zational, Policy, and User, which are not shown. Consequently, the Template related to the
Model will have 12 columns. The Template of the View will have four items, and the Tem-
plate corresponding to the Controller will have three items. These items established can
be used for both the analysis and the design of an application; since all the necessities to
build up a collaborative application are represented in these Templates.

Once the Template Model is filled (i.e., the requirements analysis of the Model is comple-
ted), the following can be generated:

•• The ontological model of the organizational structure presents the roles —their
status and rights/obligations— that establish the tasks to be performed, their acti-
vities and the resources used.

•• The task precedence workflow provides the stages order, and of their tasks in them,
as well as the events which activate each task.

•• The access control establishes the roles participating in each stage.

•• The partial data model —relational or not—shows the data, and the relations that
exist among them.

SESSION

Task
Precedence

Resource

Group
Organizational

Structure

Status Right/
Obligation

User

TaskPolicy Role Activity

Event

Stage
sequential

sequential paralel concurrent

User Interface
Information

View

Notification Concurrency CONTROLLER

MODEL

VIEWVIEW

CONTROLLER

MODEL

Participant
View

Context
View

Figure 4. MVC design patter to develop a collaborative application.

279CHAPTER # 15 - FACILITATING THE DEVELOPMENT OF COLLABORATIVE APPLICATIONS WITH THE MVC ARCHITECTURAL PATTERN

Once the Controller Template has been completed, it is possible to deduce:

•• The coordination workflow considers the resources used in the concurrent task and
the role being carried out, as well as, the managed mechanism, both the notifica-
tion and the concurrency.

•• The collaboration workflow displays the different roles that work together on the
execution of a task.

•• Once the View Template has been created, the following can be generated:
•• The interaction workflow shows the user interfaces and the views contained in

them, as well as the roles participating in each task shown on the user interfaces.
•• The group awareness workflow exhibits the Participant’s View, as well as the modi-

fied resources for tasks involved in this view.
•• The group memory workflow presents the Context View, as well as the resources

modified by the tasks involved in this view.

In summary, the inclusion of the three types of tasks simplifies the management of the
Controller, as they help to shorten notification and concurrency processes, as well as to
define that view will be shown in the different user interfaces that present the session.
So, the developer will have a suitable design to its application.

Finally, the implementation of the collaborative application can be achieved, by codi-
fying the tasks and user interface allocated on the Templates. Furthermore, the modula-
tion is made through MVC architectural pattern presented.

4.4	 Using the MVC architectural pattern proposed to
develop a collaborative application

A study case is presented to demonstrate the operability of the MVC architectural pat-
tern using the Templates. The study case consists in the development of a collaborative
application for managing Departmental Test (DET) of the Facultad de Ciencias de la Com-
putación de la Universidad Autónoma de Puebla. The DET homogenizes the teaching of
a subject, i.e. it guarantees that all teachers encompass the same percentage of the aca-
demic program. For this reason, it requires a shared workspace that allows professors to
manage and apply a DET. Several roles are considered in DET: The Manager (Mg) who con-
figures the application (CA) and has status equal to 1, so, he/she registers the users, who
play the other four roles, the knowledge areas, and the subjects that are a part of them.
The Area Coordinator (AC) with status 2, who manages the test (MT), so, he/she registers
the TC and schedules the professors’ meetings, related with the same subject. The Test

280 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Coordinator (TC) with status 3, who organizes the test (OT), so, he/she put in order the
completion of each test, requesting and agreeing on the number of tests to be applied,
as well as on the dates and the number of questions which will be included; then he/she
will post the test and the classroom, where each Professor will apply it. The Professor (P)
with status 4, who generates the test (GT), thus, he/she will propose and vote the date
when the test will be performed, so as the number of questions contained in the exam.

Table 1. Template of the test elaborating stage.

MODEL VIEW CONTROLLER

St
ag

e

Ro
le

St R/
O

Ev
en

t

TA
SK

ACTIVITY RESOURCE Pr
e

ST PT CT IV PV CV Ss Nt Cc
TE

TC 3 OT To access to
DET Au

getting into data Text box
1 Ö Ö χ Ö Ö Ö Not shared Ö χ

sending data Accept Button

TC,
P 3,4 OT,

GT
to define
test date

PD
getting into date

Test UI
2 Ö Ö χ Ö Ö Ö Shared Ö χ

posting date

SD
choosing date

6 Ö Ö χ Ö Ö Ö Not shared Ö χ
loading date

P 4 GT

to access to
DET Au

getting into data Text box
3 Ö Ö χ Ö Ö Ö Not shared Ö χ

sending data Accept Button

to define
test date

CP
choosing data Coordinator UI

4 Ö χ χ Ö χ χ Not shared χ χ
showing data Accept Button

CD
choosing date Scheduling UI

5
 Ö Ö Ö Ö Ö Ö Shared Ö Övote date Text box

sending vote Accept Button

TC 3 OT

to select
DET
questions

PNQ
getting into date

Test UI

7 Ö χ χ Ö χ χ Not shared χ χ
posting data

SNQ
choosing number

8 Ö χ χ Ö χ χ Not shared χ χ
loading number

TC,
P 3, 4 OT,

GT

CP visualizing question
9 Ö χ χ Ö χ χ Not shared χ χ

PQ
choosing question

loading question
10 Ö Ö Ö Ö Ö Ö Shared Ö Ö

LP
choosing file Test UI
Subir file

CP
choosing data Coordinator UI

11 Ö χ χ Ö χ χ Not shared χ χ
showing data Accept Button

to define
DET

DE
choosing file

Test UI 12 Ö χ χ Ö χ χ Not shared χ χ
downloading file

P 4 GT

CQ
choosing question

13 Ö Ö Ö Ö Ö Ö Shared Ö Övote by question Text box
sending vote Accept Button

to send
advise PN

writing notice Text box
0 Ö χ χ Ö χ χ Not shared χ χ

posting notice Accept Button

to send
message PM

writing message Text box
0 Ö χ χ Ö χ χ Not shared χ χ

posting message Accept Button

281CHAPTER # 15 - FACILITATING THE DEVELOPMENT OF COLLABORATIVE APPLICATIONS WITH THE MVC ARCHITECTURAL PATTERN

Table 2. Template of the test elaborating stage.

MODEL VIEW CONTROLLER

St
ag

e

Ro
le

St R/
O

Ev
en

t

TA
SK

AC
TIV

ITY

RESOURCE Pr
e

ST PT CT IV PV CV Ss Nt Cc

Tf Mg 1 CA

access to DET Au

CRUD
data

Text box
1 Ö χ χ Ö χ χ Unshared Ö χ

Accept Button

to manage AC CRUD
AC

Form
2 Ö χ χ Ö χ χ Unshared Ö χ

Accept Button

to manage area CRUD
Area

Form
3 Ö χ χ Ö χ χ Unshared Ö χ

Accept Button

to manage
Subject

CRUD
Subject

Form
4 Ö χ χ Ö χ χ Unshared Ö χ

Accept Button

to manage P CRUD P
Form

5 Ö χ χ Ö χ χ Shared Ö χ
Accept Button

Table 2. Template of the test preparation stage.

MODEL VIEW CONTROLLER

St
ag

e

Ro
le

St R/
O

Ev
en

t

TASK ACTIVITY RESOURCE Pr
e

ST PT CT IV PV CV Ss Nt Cc

TP AC 3 MT

to access to
application Au

getting data Text box
1 Ö Ö χ Ö Ö Ö Not

shared Ö χ
sending data Accept Button

to register CRUD
TC CRUD TC

form
3 Ö Ö χ Ö Ö Ö Not

shared Ö χ
Accept Button

to
scheduling

PMD
writing date

Scheduling UI
2

Ö Ö χ
χ Ö Ö Not

shared Ö χ
posting date χ χ χ

SD
choosing date

Ö Ö χ Ö Ö Ö Not
shared Ö Ö

loading date Scheduling

Table 3. Template of the test results stage.

MODEL VIEW CONTROLLER

St
ag

e

Ro
le

St R/
O

Ev
en

t

TA
SK

AC
TIV

ITY

RE
SO

UR
CE

Pr
e

ST PT CT IV PV CV Ss Nt Cc

TR

TC 3 OT To create
test

LDET
loading file

Test UI 1 Ö Ö χ Ö Ö Ö Shared Ö χ
posting file

PoC

writing
classroom Text box

2 Ö Ö χ Ö Ö Ö Shared Ö χ
posting
classroom

Acept
Button

P 4 GT
To
posting
scores

LoS
loading file

Test UI 3 Ö Ö χ Ö Ö Ö Shared Ö χ
posting file

S, P,
TC,
AC

5,
4,
3, 2

VS, GT,
OT, CA DoS

choosing file
Test UI 4 Ö Ö χ Ö Ö Ö Shared Ö χdownloading

file
This table continues on the following page ––––––>

282 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

MODEL VIEW CONTROLLER
St

ag
e

Ro
le

St R/
O

Ev
en

t

TA
SK

AC
TIV

ITY

RE
SO

UR
CE

Pr
e

ST PT CT IV PV CV Ss Nt Cc

TR

P,
TC,
AC

4,
3, 2

GT, OT,
CA

To
generate
reports

GR

creating
report

File 5 Ö Ö χ Ö Ö χ Un-
shared Ö χ

loading report

LS
loading file

Test UI 6 Ö Ö χ Ö Ö Ö Shared Ö χ
posting file

S, P,
TC,
AC

5,
4,
3, 2

VS, GT,
OT, CA To Chat PM

writing
message Text box

0 Ö Ö χ Ö Ö Ö Shared Ö χ
posting
message

Acept
Button

P,
TC,
AC

4,
3, 2

GT, OT,
CA

To public
notice PN

writing notice Text box
0 Ö Ö χ Ö Ö Ö Shared Ö χ

posting notice Acept
Button

S, P,
TC,
AC

5,
4,
3, 2

VS, GT,
OT, CA

To
Schedule
test

ST Scheduling
Scheduling
UI 7 Ö χ χ Ö χ χ Shared χ χ
Scheduling

The Students (S) with status 5, who views scores (VS) of the test, so, he/she will look up
the information about the date and classroom, where the test will be carried out, as well
as to find the grades obtained on each subject. In general, the five roles must register
to join at the session.

The collaborative application for managing the DET has four stages: Test Configuration
(Tf), Test Preparation (TP), Test Elaborating (TE), and Test Results (TR). Which will be ex-
plained later.

The requirements analysis can be carried out by using techniques of classic or agile
methodologies. It depends on the developer abilities. Once the developer has got the re-
quirements, he/she allocates them on the Templates, which are generated in this chap-
ter. For reasons of space, four Templates are presented (see Table 1, 2, 3, and 4), one by
each DET stage. Each Template contains the columns related to the three components of
the MVC architectural pattern; with the exceptions mentioned above.

The organizational structure ontology of DET is derived from the Model Template. The
figure 5 shows this structure partially, in which the five roles of the DET with its status
(St) and Right/Obligations (OR) are presented, but only two of these roles are active,
because they correspond to the stage of TE, which is shown in this figure. Therefore, for
these roles (TC and P) their tasks together with their types (Sequential —Sq, Parallel —Pr,
Concurrent —Cn), and precedences are displayed. The events, activities and resources
for the tasks of the roles TC and P for reasons of space are not exhibited.

283CHAPTER # 15 - FACILITATING THE DEVELOPMENT OF COLLABORATIVE APPLICATIONS WITH THE MVC ARCHITECTURAL PATTERN

The Stage TE proposals two roles:

•• The role TC carries out the tasks of: Authentication (Au) him/herself, Proposing Date
(PD), Setting Date (SD), Proposing Number of Questions (PNQ), Setting Number of
Questions (SNQ), and Posting Questions (PQ);

•• The role P executes the tasks: Au him/herself, Consulting Proposals (CP), Choo-
sing Date (CD), Loading Proposal of questions (LP), Downloading Exercises of the
test (DE), Choosing Questions of the test (CQ), Posting Notice (PN), and Posting
Message (PM).

Moreover, all tasks are of type sequential (Sq), and some, they can also be parallel (Pr)
or Concurrent (Cn). On the other hand, the task with precedence equal to zero indicates
that can be carried out at any moment; once the user has accessed to DET.

Furthermore, Templates help us to build the workflow of task precedence (see Figure
6) for a user playing the role of TC. In this case, the user or users playing this role can
access to three stages: TP, TE, and TR. In the first stage, the TC performs the Tasks of:
Authenticate (Au) him/herself, and the functions of persistent storage, i.e., create, read,
update, and delete (CRUD) for Professor. In the second one, the TC executes the Tasks of:
Au him/herself, PD, SD, PNQ, Setting Number of Questions SNQ, and PQ.

Task Precedence

Resource

GOS-DET

Status R/O

User

P-DET

ROLE

Activity

Event

Stage TE

sequential

P

4 OT GT

Mg AC S

1 2 5

TC

3 CA MT VS

Au PD SNQ

CP

PNQ

CD

SD PQ

CQAu LP DE PN PM

1 2

3 4 5

6 7 9

10 11 12 0 0

Pr

Pr Cn

Sq

Task

8

Figure 5. Organizational structure ontological model of Stage TE.

284 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

In the third one, the TC performs the following tasks: Au him/herself, Downloading Sco-
res (DoS), Generating Reports (GR), Loading Statistics (LS), PM, PN, Scheduling Test (ST),
Loading DET (LDET), and Posting classroom (PoC). For the second stage named

STAGES
Au

PD

SNQ

PNQ

SD

PQ

PN PM

Au

CRUD P

X-USER

ROLE: TC

TP

T
A
S
K
S

TE TR

Au

LDET

LS

GR

PoC

ST

Figure 6. Task workflow of the Test Coordinator.

Test Elaborating, a User Interface is created; it allows TC to consult the proposed ques-
tions for test, select the more voted questions, and with these questions to create the
test to be applied; with this a new user interface is presented, where the TC can print the
test in pdf and send it to the participant professors.

For reasons of space, the tasks’ precedence and access control into the Figure 7 are
shown. Therefore, the four stages with precedence, and tasks that contain these, also, its
respective precedences are displayed.

•• The role Mg joins to the Stage Tf, executing the tasks of: Authenticate (Au) him/her-
self, CRUD for AC, area, subject, and AC.

•• The roles Mg and TC enter to the Stage TP; the former performing the tasks of Au,
CRUD TC, Proposing Meeting Date (PMD), and SD; the latter executing the tasks of
Au, and CRUD P.

285CHAPTER # 15 - FACILITATING THE DEVELOPMENT OF COLLABORATIVE APPLICATIONS WITH THE MVC ARCHITECTURAL PATTERN

•• The stage TE has already been described in the beginning of this section.

•• Finally, four roles (AC, TC, P, and S) participate in the Stag TR. The role AC imple-
ments the tasks of DoS, GR, LS, PM, PN, and ST. The role TC in addition to performing
the same tasks that the role AC, he/she carries out the tasks of LDET, and PoC. The
role P effects the tasks of: Loading Scores (LoS), DoS, GR, LS, PM, PN, and ST. The role
S carries out the task of DoS, PM, ST.

TASKROLE STAGE

P4

OT

GT

Mg

AC

S

1

2

5

TC3

CA

MT

VS

Au PD SNQ

CP

PNQ

CD

SD PQ

CQAu LP DE PN PM

1 2

4 5

6 7 8 9

10 11 12 0 0

St R/O PRECE
DENCE

Tf

TP

TE

TR

Au AC PSubjectArea
1 2 3 4 5

CRUD

Au CRUD TC SDPMD1 2 3 4

1

2

3

4

DoS

GR GR 6
PN

0

PM
0

ST 9

LDET

LoS

3

1 2

5

4

3
PoC

Au5 CRUD P 6

Figure 7. Precedence and access control of the DET.

Once the Model Template has been defined, then the Controller Template ca be esta-
blished of a simple, clear way. First, for each stage a session is implemented. Second, for
each task Sequential and Parallel a notification mechanism is carried out. Third, for each
task concurrent a concurrency mechanism is performed.

The workflow of collaboration and Coordination (see figure 8) is deduced of the Model
and Controller Templates, and corresponds to the task LP of the Stage TE, where the user
playing the role P can load its proposals of departmental test questions. Therefore, it
must carry out both coordination as collaboration mechanisms. In the former, each P

286 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

sends its questions through of their user interface using the notification mechanism.
These questions are stored on database in different register by concurrency mechanism,
avoiding of this manner data inconsistency. In the latter, each P collaborates to create
the departmental test, sending its proposals exercises, once they have been stored and
displayed; the role P votes for your preference. So, the test is completed.

Once both Model Template and Controller Template have been completed, then View
Template can be accomplished in a simple, clear manner. First, for each Task Sequential
an Information View is presented. Second, for each Task Parallel a Participant View is
shown. Third, for each task concurrent a Context View is displayed.

STAGE TE ROLE P

R
E
S
O
U
R
C
E

JOHN JEFF ANN JANE JADE JESS
USER

TASK LP

ACTIVITY: Writting & Sending Proposal

NOTIFICATION & CONCURRENCY

USER INTERFACE OF
EACH USER

REGISTER 1
REGISTER 2
REGISTER 3
REGISTER 4
REGISTER 5
REGISTER 6

Figure 8. Workflow of collaboration and coordination of stage TE.

The Figure 8 is a good example of the workflow of interaction among the users, in this
case, playing the same role (P). However, according to Table 1, the role TC can carry out
the PQ (task) of departmental test. So, it will have the interaction of different users pla-
ying two roles (TC and P).

The group awareness can be watched in the figure 9, in the part right labeled as PV, whe-
re the Professors’ chat is presented. Here each user with role P can send a message with
respect to the departmental test that is being created.

287CHAPTER # 15 - FACILITATING THE DEVELOPMENT OF COLLABORATIVE APPLICATIONS WITH THE MVC ARCHITECTURAL PATTERN

On the other hand, the group memory can be examined in the figure 9, in the part central
labeled as CV, where the areas belonging to each teacher are displayed.

This information is useful for the TC, allowing him/her to group each user with role P in
a certain area.

The developer can use a framework based on MVC for the implementation of collabora-
tive applications, reducing the effort required to do so. Therefore, the time, effort, and
cost of developing this sort of applications is diminished.

For example, the user interface displayed in the Figure 9 (Spanish language is used, be-
cause the application named GEDEX is developing in Puebla, México) is created from the
items of Table 1, which are related to the Mg. role. The table items —Event, Information
view (IV), Participant View (PV), and Context View (CV) — are highlighted in the figure 9, in
order to appreciate how these are used to create a part of the user interface.

Another example is presented in Figure 9, in which the Manager’s tasks are exhibited like
a menu on the left side, on the center, several postings both of the Test Coordinator (TC)
and of the Professor (P) are shown, as well as some statistics. The right side displays the
users who participate (active users) and those who do not.

Figure 9. MVC design patter to develop collaborative applications.

288 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

5.	 Conclusions and future work

The proposal presented in this chapter allows customizing the MVC architectural pat-
tern in order to develop a collaborative application. In this manner, a solution that has
been attested in countless software problems given the same good results has been
used. This MVC architectural pattern simplifies the development of such applications,
supplying a set of items to support this process group. These items provide both indi-
vidual and collective aspects, facilitating the appropriate flexibility and responsiveness
during the evolution of the collaborative work. Finally, the templates generated from
MVC architectural pattern, offer guidelines for the analysis, design, and development of
groupware applications. For example, considering the items allocated in the templates,
it is possible to create workflows to simplify and clarify the task precedence or the inte-
raction of the users with the application. The future work will be focused on creating a
methodological approach based on MVC design-pattern for developing groupware.

6.	 References

[1] 	 C.A. Ellis, S.J. Gibbs, and G.L. Rein, “Groupware: Some Issues and Experiences,” Com-
munications of the ACM, Vol. 34-1, Jan. 1991, pp. 39-58, doi: 10.1145/99977.99987.

[2] 	 A. Goldberg, Smalltalk-80: The Interactive Programming Environment. Addison-Wes-
ley, 1984.

[3] 	 O. Addy, Learning JavaScript Architectural patterns. O’Reilly, 2015.
[4] 	 M. Roseman, and Greenberg, S. “Building real-time groupware with GroupKit. A

groupware Toolkit,” ACM Trans. Comp.-Hum. -Interact., vol. 3, Mar. 1996, pp. 66-106,
doi: 10.1145/226159.226162.

[5] 	 M. Roseman, and S. Greenberg, “Registration for Real Time Groupware,” Research
Report 94/533/02, Department of Computer Science, University of Calgary, Alberta,
Canada, 1994.

[6] 	 T. Graham, C.A. Morton, and T. Urnes, “ClockWorks: Visual Programming of Compo-
nent-Based Software Architectures,” Journal of Visual Languages and Computing,
vol. 7-2, June 1996, pp. 175-196, doi:10.1006/jvlc.1996.0010.

[7] 	 P. Orozco, J.I. Asensio, P. García, Y.A. Dimitriadis, and C. A. Pairot, “Decoupled Archi-
tecture for Action-Oriented Coordination and Awareness Management in CSCL/W
Frameworks,” Lecture Notes in Computer Science, vol. 3198, Sep. 2004, pp. 246-261,
doi: 10.1007/978-3-540-30112-7_21.

[8] 	 C.A. McGruder, “MVC for Content Management on Cloud,” MS Thesis, Naval Postgra-
duate School, 2011.

289CHAPTER # 15 - FACILITATING THE DEVELOPMENT OF COLLABORATIVE APPLICATIONS WITH THE MVC ARCHITECTURAL PATTERN

[9] 	 Z. Liu, T. Li and G. Yang, “An MVC based Collaborative Framework Support for Test
Suite,” Proc. of the 14th International Conference on Computer Supported Coo-
perative Work in Design (CSCWD 10), IEEE Press, Apr. 2010, pp.172-177, doi: 10.1109/
CSCWD.2010.5471982.

[10] 	 J. L. Garrido, M. Gea, N. Padilla, J.J. Canas, and Y. Waern, “AMENITIES: Modelo de en-
tornos cooperativos,” Actas del III Congreso Internacional Interacción Persona-Or-
denador, pp. 97-104, 2003.

[11] 	 D. Rodríguez, and R. García-Martínez, “Modeling the Interactions in Virtual Spaces
Oriented to Collaborative Work”, Chapter 10, Carlos Mario Zapata, Guillermo Gon-
zález, Roberto Manjarrés, Fabio Alberto Vargas, and Wiliam Arévalo (Eds.), Software
Engineering: Methods, modeling, and Teaching, Vol. 1, Lima, Perú, 2012.

[12] 	 A.I. Molina, M.A. Redondo, M. Ortega, and U. Hope, “ClAM. A methodology for the
development of groupware user interfaces,” Journal of Universal Computer Science,
vol. 14-9, 2008, pp. 1435-1446, doi: 10.3217/jucs-014-09.

[13] 	 V. M. Ruiz Penichet. Task-Oriented and User-Centred Process Model for Developing
Interfaces for Human-Computer-Human Environments. Ph.D. dissertation, Universi-
dad de Castilla-La Mancha, 2007.

[14] 	 M. Van Welie, G.C. van der Veer, and A. Eliëns, “An Ontology for Task World Models,”
Proc. Of the Eurographics Workshop, Ch.: Design, Specification and Verification of
Interactive System, Springer, June 1998, pp. 57-70, doi: 10.1007/978-3-7091-3693-5_5.

[15] 	 C. Ellis, and J. Wainer, “A conceptual model of groupware,” Proc. of the ACM Confe-
rence on CSCW (CSCW 94), ACM, 1994, pp. 79-88, doi: 10.1145/192844.192878.

[16]	 M. Anzures-Garcia, L.A. Sanchez-Galvez, M.J. Hornos, and P. Paderewski, “A Knowled-
ge Base for the Development of Collaborative Applications,” Engineering Letters,
vol. 23-2, Apr. 2015, pp. 65-71.

[17] 	 M. Anzures-Garcia, L.A. Sanchez-Galvez, M.J. Hornos, and P. Paderewski-Rodriguez, “A
Semantic Approach to Develop Groupware,” Research in Computing Science: Advan-
ces in Computer Science and Engineering, vol. 83, Nov. 2014, pp. 71-83.

[18] 	 J. Gallardo, C. Bravo, and M.A. Redondo, “A model-driven development method for
collaborative modeling tools,” Journal of Network and Computer Applications, vol.
35-3, May 2012, pp. 1086–1105, doi: 10.1016/j.jnca.2011.12.009.

[19] 	 M. Anzures-Garcia, L.A. Sanchez-Galvez, M.J. Hornos, and P. Paderewski, “MVC Design
Pattern Based-Development of Groupware”, Proc. of the 4th International Conferen-
ce in Software Engineering Research and Innovation (CONISOFT 2016), IEEE Xplore
Digital Library. April 2016, pp. 71-80

[20] 	C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and S. Angel,
A Pattern Language: Towns, Buildings, Construction. Oxford University Press, New
York, 1977.

[21] 	 C. Alexander, The Timeless Way of Building. Oxford University Press, New York, 1979.

290 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

[22] 	 F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-oriented
Software Architecture. A System of Patterns, John Wiley and Sons, Vol. 1, 1996.

[23] 	S. Huang, and P.-W. Ng, “Essence as a Framework for Conducting Empirical Stu-
dies”, Chapter 2, Carlos Zapata, Luis Fernando Castro (Eds.), Software Engineering:
Methods, modeling, and Teaching, Vol. 3 , Medellín, Colombia, 2014

[24] 	C.M. Zapata, “An executable pre-conceptual schema for a software engineering ge-
neral theory”, Chapter 1, Carlos Zapata, Luis Fernando Castro (Ed.), Software Engi-
neering: Methods, modeling, and Teaching, Vol. 3, Medellín, Colombia, 2014

[25] 	M. Anzures-García, and L.A. Sánchez-Gálvez, “Policy-based group organizational
structure management using an ontological approach,” Proc. International Confe-
rence on Availability, Reliability and Security (ARES 08), IEEE Press, Mar. 2008, pp.
807-812, doi: 10.1109/ARES.2008.186.

[26]	 M. Anzures-García, L.A. Sánchez-Gálvez, M.J. Hornos, and P. Paderewski-Rodríguez,
“Ontology-Based Modelling of Session Management Policies for Groupware Appli-
cations,” Lecture Notes in Computer Science, vol. 4739, Feb. 2007, pp. 57–64, doi:
10.1007/978-3-540-75867-98.

291

Chapter # 16
Creating an Estimation

Model from Functional Size
Approximation Using the EPCU

Approximation Approach for
COSMIC (ISO 19761)

Francisco Valdés-Souto
Science Faculty
National Autonomous University of Mexico (UNAM)
CDMX Mexico City, Mexico
fvaldes@ciencias.unam.mx

1.	 Introduction

Information is acquired gradually throughout the software development life cycle. At the
early phase, the majority of information available is at a very high level of abstraction and
it is often based on a number of assumptions that can neither be verified nor precisely
described at that point in time. This leads to the challenge of having to make decisions on
project constraints based on incomplete and, at times, unreliable information [1].

At this early phase of a software development process, management must rely on such
incomplete information for decision making purposes, and usually the decisions made
were based on estimations. As Tom de Marco defined it: “An estimation is a prediction
that is equally likely to be above or below the actual result” [2].

Morgenshtern [3] mentions the usages of project estimation as follows: project selec-
tion; staffing; scheduling; monitoring and control; team performance assessment; and
marketing.

It is generally recognized that project requirements define the project size (scope),
which impact the effort required to develop the project, which then drives the project
duration [4].

292 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

In the past 40 years, many estimation models and tools have been developed [5]–[24]:
the majority of these models focus on estimating effort.

In order to generate estimation models, the researchers have used databases documen-
ted on the basis of the past completed projects they participated in, usually, this infor-
mation is not available to all the persons or is difficult to acquire, or has elements that
do not make sense for all the database’s users.

Most of the estimation models developed are dependent on the representativeness of
the samples (databases) utilized, that is, means, the majority of most of the estimation
models must be calibrated locally, aiming at better behavior, and this requires local his-
torical data (a database).

Morgenshtern pointed out that “Algorithmic models need historic data, and many orga-
nizations do not have this information. Additionally, collecting such data may be both
expensive and time consuming” [3].

In the actual competitive business context, software development organizations are of-
ten time-to-market driven. In this context, expert judgment (‘experience-based’) is the
estimation approach typically employed in the industry [25].

Of course, there are a number of problems implicit in using the experience to provide es-
timates, i.e., using measures and estimations still based on researchers’ intuition rather
than on rigorous designs and strong experimentation, does not contribute to mature
software engineering.

This chapter proposes a solution to generate a historical database in a formal but prac-
tical way, utilizing an approximate sizing approach for the COSMIC method [26]. The idea
is to reduce the cost and effort required to gather a historical database that could be
employed to generate estimation models.

The remainder of this chapter is organized as follows. Section II describes overview
information related to estimation models and the importance of databases within this
context. Section III presents information of COSMIC method as related to the accep-
ted approximation approaches, their highlights, and mainly the EPCU approximation
approach used in this chapter. Section IV describes a quantitative case study with a
set of industry projects from a single organization in the financial sector, how a data-
base was created, and how a productivity model can be generated. Section V sets the
conclusions.

293CHAPTER # 16 - CREATING AN ESTIMATION MODEL FROM FUNCTIONAL SIZE APPROXIMATION USING THE EPCU APPROXIMATION APPROACH FOR COSMIC (ISO 19761)

2.	 Estimation models and databases

It is generally recognized that requirements define the project size (scope), which impact
the effort needed to develop it, which then drives the project duration [4] – see Figure 1.

In the past 40 years, many estimation models and tools have been developed [5] – [24]:
the majority of these models focus on estimating effort.

Figure 1. An example of a strategy to estimate project duration [4].

In the literature mainly two distinct approaches of estimation techniques/methods/
models classification were found.

The first approach [18, 19, 27], establishes a classification with three categories:

•• Expert judgment. This approach was not considered as a technique because the
means of deriving an estimate are not explicit. However, the estimation techni-
que typically employed in industry is the one based on the experience of the
organization’s employees.

•• Algorithmic models. These are the most popular ones in the literature. Basically,
these models are derived from statistical or numeric analysis over some historical
projects.

•• Analogy. This was considered a systematic form of the expert judgment approach.

The second approach [18, 19], establish a classification into two major categories:

•• Algorithmic models.

•• Non-algorithmic models. These were constructed seeking to avoid some of the
weaknesses in the algorithmic models and, aimed to model more adequately

294 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

the complex relationships between independent variables and the dependent
variable.

It is interesting to note that in the previous classifications, except for that of expert jud-
gment, all of the types described utilize mathematical algorithms. This has been con-
sidered recently by Abran [28], who defines a common view of the estimation process,
identifying only two types of Estimation Models (Figure 2):

•• Expert Judgment, and

•• Mathematical Model. These models include any models that are derived from sta-
tistical, numeric analysis, or more generally, mathematical algorithms.

Figure 2. Common view of estimation process [28]

Any estimation model possesses a strong relationship with the measurement process
of the input variables employed to generate the estimate. This means that the measu-
rement process comprises the basis of the estimation model: when the measurement
of input variables for an estimation model is reliable, greater confidence is generated in
the use of the estimation model [1].

In order to generate the estimation models, researchers have used databases documen-
ted on the basis of past completed projects they participated in. Usually, this informa-
tion is not available to everyone, or is difficult to acquire, or it has elements that do not
make sense for all the database’s users.

The majority of the estimation models developed are dependent on the representative-
ness of the samples (databases) used.

295CHAPTER # 16 - CREATING AN ESTIMATION MODEL FROM FUNCTIONAL SIZE APPROXIMATION USING THE EPCU APPROXIMATION APPROACH FOR COSMIC (ISO 19761)

There is an international database managed by a non-profit organization, the Inter-
national Software Benchmarking Standards Group (ISBSG). This organization gene-
rates reports considering an international sample of data [30].

In the literature there are several estimation techniques, Gray et al. [29], analyze se-
veral estimation techniques in terms of modeling capabilities (See Table 1)

In order to acquire a better behavior of the software estimation models develo-
ped, most of these need to be calibrated locally, and this requires local historical
data (database) documented on the basis of the past completed projects for each
organization.

As pointed out by Morgenshtern, “Algorithmic models need historic data, and many
organizations do not have this information. Additionally, collecting such data may
be both expensive and time consuming” [3].

Of course, for the Mathematical Models defined by [28], this affirmation applies in
the same way.

Thus, improvements in software estimation within the context of generating a histo-
rical database and estimation models in a less expensive way are welcome in order
to contribute to mature software engineering.

2.1	 Quality Criteria

The more frequent way to compare the estimation models and define the confi-
dence about them, can be called quality criteria: Magnitude of Relative Error (MRE),
Standard Deviation (SDMRE) and Prediction level (PRED) – see [14, 17, 18, and 16].

•• The Magnitude of Relative Error (MRE) is usually defined by:

(1)

The accuracy of the estimation can also be measured by the Mean Magnitude of Re-
lative Error (MMRE) and the Median Magnitude of Relative Error (MdMRE).

•• The SDMRE is usually defined by:

MRE =
Actual – Estimated

Actual

296 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

(2)

•• The prediction level Pred.

(3)

These criteria are very often used in the literature related to estimation models in soft-
ware. The goal is to gather a low MMRE/MdMRE, a low SDMRE and high PRED.

3.	 Cosmic method

In mature disciplines, it is possible to observe international consensus on measure-
ment, as evidenced by established measurement methods and their respective etalons.
In the software domain, there exist international standards only for functional size mea-
surement, including the ISO 14143 series, which prescribe key concepts of the entity and
the attributes to be measured. To date, ISO has recognized five (5) Functional Size Mea-
surement (FSM) methods for software that comply with ISO 14143, but only one is refe-
rred to as second (2nd) generation of FSM methods: COSMIC – ISO 19761 [31], the current
version of this method, is version 4.0.1 and could be found at www.cosmic-sizing.org.

Table 1. Comparison of estimation techniques in terms of modeling capabilities, adapted
from [29].

Pred (I) =
K
N

MRE =
Actual – Estimated

Actual

297CHAPTER # 16 - CREATING AN ESTIMATION MODEL FROM FUNCTIONAL SIZE APPROXIMATION USING THE EPCU APPROXIMATION APPROACH FOR COSMIC (ISO 19761)

3.1	 COSMIC Approximation

FSM methods work best when the information to be measured – the FURs – is fully
known [32].

Santillo [32] further states that the “functional size of software to be developed can be
measured precisely [only] after the functional specification stage: this stage is often
completed relatively late in the development process.”

However, this is most often not the case in the early phase of software development
projects, when detailed information may not be available and when estimations are
needed.

Aiming to tackle the problem of obtaining a software size idea when detailed informa-
tion may not be available (Early Sizing) or when there is not enough time to measure the
required software using the standard method (Rapid Sizing), researchers have develo-
ped some approximation approaches [31, 33, and 34].

In particular, for the COSMIC method, a Guideline for Early or Rapid COSMIC Functional
Size Measurement was released in 2015. In this Guideline the approximation principles
and valid approximation approaches for COSMIC were established [26].

Analyzing the approximation approaches described in [26], the following highlights were
identified and they are presented in Table 2.

Table 2 shows that the validity of the majority of approximation techniques is dependent
on the local calibration of the approximation approaches, except for the EPCU Appro-
ximation approach which does not require local calibration and which is useful when
there is no historical data available [35, 34].

1.	 EPCU Approximation approach

The full description and use of the EPCU Approximation approach can be reviewed in
[31] and [35]. However, the EPCU model defines an EPCU Context as “a set of variables
(inputs and output) and the relations that affect a specific project or a set of similar
projects” [1].

For the EPCU Approximation approach as defined in [31] and [35], the EPCU context defi-
ned, states the input variables as:

298 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

1.	 Variable 1: the use case/functional process size (evaluated through a subjec-
tive, experience-based approach), and

2.	 Variable 2: the number of objects of interest related to the use case/functional
process (also evaluated through a subjective, experience-based approach).

These input variables were utilized in the experimentation in, [31, 34], to approximate
functional size for functional process and use cases.

In practice, use cases are wide spread in the industry and can be identified earlier, which
is less costly than identifying functional processes [31].

With the EPCU Approximation approach, an organization can collect historical data
without the need to perform detailed measurements [35].

Table 2. Approximation techniques analysis highlights [34].

Approximation
Approach

Needs local
calibration

Requirement
granularity level Consideration

Average
Functional
Process

X Functional
Process

This approximation is valid as long as
there is sufficient reason to assume
that the sample on which the size of the
average functional process is calculated
is representative for the software of
which the functional size of which size is
approximated. [38]

Fixed Size
Classification X Functional

Process

This approximation is valid as long as
there is sufficient reason to assume
that the assigned size classification is
representative for the software of which
the functional size of which size is
approximated. [38]

Equal Size
Bands
approximation

X Functional
Process

This method is recommended for the
approximate sizing of software where the
distribution of the functional process sizes
is skewed. For the business application,
this method has little added value over the
average functional process method (1) or
the fixed size classification method (2). [38]

Average
Use Case
approximation

X Use Case

This approximation is valid as long as there
is sufficient reason to assume that the
assigned size classification of an average
use case is representative for the software
of which the functional size of which size is
approximated. [38]

This table continues on the following page ––––––>

299CHAPTER # 16 - CREATING AN ESTIMATION MODEL FROM FUNCTIONAL SIZE APPROXIMATION USING THE EPCU APPROXIMATION APPROACH FOR COSMIC (ISO 19761)

Approximation
Approach

Needs local
calibration

Requirement
granularity level Consideration

Early & Quick
COSMIC
approximation

X Multilevel
Approach (*)

The precision of the method is strongly
dependent on the training and capability
of the practitioners who use it to
understand the categories at higher levels
of granularity. [38], this approximation
approach combines scaling and
classification approaches.

Quick/Early
approximation Use Cases

The precision is directly proportional to
the level of granularity of the analyzed use
cases model.

EPCU
approximation

Functional
Process & Use
Cases

Does not require local calibration (less
expensive) and is useful when there are no
historical data available.

4.	 Case study

In order to create an estimation model as described in the proposal, the case study de-
signed in [36] was adapted, with the next steps:

•• Gathering projects information

•• Defining the database set of projects

•• Functional size approximation

•• Creating historical database

•• Generating effort/cost productivity models

•• Creating the Estimation Models

4.1	 Gathering projects information

As a part of a Spring 2015 teaching course in Project Management for a Master of
Science degree, at a Mexican University, a set of eleven (11) projects from a financial
institution were gathered, all of the projects are industry projects, meaning they were
developed and delivered at the end of 2015. All the projects were in a production
environment.

For confidential issues, the projects were labeled as “Project 1”, to “Project 11”, and pro-
ject selection was conducted considering projects for which the real cost ($ USD) and
effort (person-month) were known (see Table 3).

300 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

In Table 3, the first column is the project identifier, the second column is related to the
effort in person-months that was utilized to develop the project from requirements to
the acceptance test, while the third column is related to the cost required to develop
the project, in $USD.

Table 3. Data related with effort and cost gathering from all the projects

Project ID Effort (person-month) Cost ($ USD)
Project 1 3.70 $ 14,031.41
Project 2 5.20 $ 18,219.90
Project 3 5.40 $ 19,371.73
Project 4 5.30 $ 16,753.93
Project 5 8.40 $ 30,628.27
Project 6 9.30 $ 33,246.07
Project 7 9.80 $ 35,235.60
Project 8 10.50 $ 34,240.84
Project 9 12.50 $ 43,560.21
Project 10 16.00 $ 57,591.62
Project 11 15.00 $ 52,094.24

4.2	 Defining the database set of projects

Once the whole projects were identified, two thirds (2/3) were selected randomly to con-
form the database, this is recommended by Abran in [28].

The projects identified as out of the database were in grey in Table 3 (Project 3, Project
4, Project 7, and Project 11).

With the remaining projects the database was created following the step proposed in
[36].

4.3	 Functional size approximation

With the projects identified as a part of the database, the team leaders who participated
in the project’s development were asked to perform the following:

1.	 Identify for each project the use cases related, each use case was labeled (i.e.
Use Case 1 to Use Case n).

301CHAPTER # 16 - CREATING AN ESTIMATION MODEL FROM FUNCTIONAL SIZE APPROXIMATION USING THE EPCU APPROXIMATION APPROACH FOR COSMIC (ISO 19761)

2.	 Classify each of the use cases for each project utilizing the linguistic values:
Small, Medium, Large and Very Large.

3.	 Classify the number of objects of interest for each of the use cases for each
project utilizing the linguistic values: Few, Average, and Many.

4.	 Assign values for the two previously classified input variables (points 2 and 3,
the use case size, the amount of objects of interest related with the use case)
defined from the EPCU context, considering the subjective classification rela-
tive functional size of the use cases and the subjective classification on the
number of objects of interest in each use case, each value assigned within the
range of 0 to 5 ε R.

Considering the information acquired from the team leaders, approximation of the
functional size in COSMIC units (CFP) was performed, using the EPCU approximation
approach [34].

The COSMIC functional size approximation for each project is depicted in Table 4 and full
data considering the approximation size for each use case are presented in Appendix A.

Table 4, illustrates, in the first column, the project identifier, and, in the second column,
the COSMIC functional size approximation in CFP using [34].

Table 4. Cosmic functional size approximation using the epcu approximation approach for each
project in database

Project ID COSMIC functional size approximation for use case [CFP]
Project 1 76.36
Project 2 127.2
Project 5 308
Project 6 270.04
Project 8 281.9
Project 9 423.88
Project 10 599.52

Considering [34], the quality criteria for the functional size approximation included Mean
Magnitude of Relative Error (MMRE) equal to 43% and Standard Deviation of MRE (SD-
MRE) equal to 34%. This information is important to know the confidentiality of the EPCU
approximation approach that has been studied in previous research and that is out of
the scope of this chapter.

302 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

4.4	 Creating historical database

A database that stores data from past projects is fundamental for constructing estima-
tion models [3], or productivity models, as is mention by Abran [28].

The data base is dependent on the representativeness of the samples (databases)
used. In addition, the database requires transcendental measurement that enables the
use of data over time, techniques, languages, or software development methodologies.

Because in the software domain there exist international standards only for the
functional size measurement, the functional size measurement method used is COS-
MIC – ISO 19761, but employing the EPCU approximation approach, renders data collec-
tion efforts and costs to collect data less expensive.

The EPCU approximation approach has been automated by the mechanism “EST-
20131211PRXFUC” that could be accessed in www.mepe.com.mx. This mechanism was
used to make the approximation for each use case for each project in this chapter.

The projects considered derived from the same organization and were developed by
the same division. Thus all of the projects possess similar features; for instance, they
were developed using Java as the programming language, and they were developed for
Web use and Oracle as Database Management System (DBMS). Of course, it could be
important to have additional classification characteristics for the projects, in order to
enable a more precise selection. For this case study, the projects selected had similar
features.

Table 5. Database created using the epcu approximation approach

Project ID COSMIC functional size
approximation for use case [CFP]

Effort
(person-month)

Cost
($ USD)

Project 1 76.36 3.70 $ 14,031.41

Project 2 127.2 5.20 $ 18,219.90

Project 5 308 8.40 $ 30,628.27

Project 6 270.04 9.30 $ 33,246.07

Project 8 281.9 10.50 $ 34,240.84

Project 9 423.88 12.50 $ 43,560.21

Project 10 599.52 16.00 $ 57,591.62

303CHAPTER # 16 - CREATING AN ESTIMATION MODEL FROM FUNCTIONAL SIZE APPROXIMATION USING THE EPCU APPROXIMATION APPROACH FOR COSMIC (ISO 19761)

Considering the information acquired, the basic attributes for the database are descri-
bed as follows:

•• Project ID

•• COSMIC functional size approximation for use case

•• Effort (person-month)

•• Cost ($ USD)

The database is presented in Table 5. This comprises a merger of Tables 3 and 4 (see the
column description).

More attributes for the database must be defined if the projects have distinct features
(technical and environmental). It is relevant that the database attributes defined enable
a classification of projects in a consistent way.

4.5	 Generating effort/cost productivity models

Once the database was created, a productivity model could be generated. Abran men-
tion that “…the productivity model represents the modeling of the relationship between
the two variables …., that is between the independent variables (the size of the software)
and the dependent variable (completed project effort)” [28].

The productivity models were mathematical models constructed using data from
completed projects, and the productivity models will be utilized as estimation mo-
dels [28].

In order to define a productivity model, a scatter point that correlates the functional size
approximation (x axis) with cost (y axis) is generated figure 3.

From the scatter point and using Excel it is possible to obtain the productivity model
with a correlation function represented by:

	 (4)		 y = 82.827 x + 8381

With a correlation factor of R² = 0.9813. In this case, there is a high R2, representing a
good correlation between independent variable (functional size in COSMIC units) and
dependent variable (cost).

304 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Figure 3. Scatter point functional size approximation vs. cost

Considering the scatter point correlating functional size approximation (x axis) with effort in
person-month (y axis) shown in figure 4, a productivity model could be obtained using Excel.

The productivity model is defined by the correlation function:

	 (5)		 y = 0.0233 x + 2.4288

With a correlation factor of R² = 0.957. In this case, there is also a high R2, representing
a good correlation between independent variable (functional size in COSMIC units) and
dependent variable (effort).

Figure 4. Scatter point functional size approximation vs. effort

305CHAPTER # 16 - CREATING AN ESTIMATION MODEL FROM FUNCTIONAL SIZE APPROXIMATION USING THE EPCU APPROXIMATION APPROACH FOR COSMIC (ISO 19761)

4.6	 Creating the Estimation Models

Once the productivity models (effort/cost) were generated, it is possible to represent
the relationship between the independent variables (the size of the software) and the
dependent variable (completed project effort) for past projects [28].

In order to determine the estimation models for effort and cost, it is needed to evaluate
the confidence of the productivity models related to a distinct set of projects that were
not included in the database.

For this issue, the projects identified as out of the database were used to be evaluated
in order to obtain a cost estimation and effort estimation with (4) and (5) respectively.

The results obtained in the estimation were shown in Table 6.

Table 6. Estimation from the productivity models using projects out of the database

Project ID
COSMIC

functional size
approximation

for use case [CFP]

Effort
Estimation

(man-month)

Cost
Estimation

($ USD)

Effort
MRE

(respect the real
effort, Table 3)

Cost
MRE

(respect the real
cost, Table 3)

Project 3 161.24 6.19 21,736.03 14.5% 12.2%
Project 4 153.60 6.01 21,103.23 13.4% 26.0%
Project 7 231.73 7.83 27,574.50 20.1% 21.7%
Project 11 522.44 14.60 51,653.14 2.7% 0.8%

In Table 7, it is possible to observe that effort estimation and cost estimation were closer
to the real value.

Related to the effort estimation the highest MRE is 20.1% (for Project 7) and the lowest
MRE is observed in Project 11 (2.7%).

Considering the cost estimation, the lowest MRE is for the Project 11 (0.8%), and the hig-
hest MRE is observed for the Project 4 (26%).

1.	 Calculating the estimation model confidence

The way to compare and to know the confidence for an estimation model, is by calcu-
lating the quality criteria, the Table 8, depicts the quality criteria for both estimation
models.

306 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Table 8. Quality criteria

Effort MRE Cost MRE
MMRE 12.7% 15.2%
SDMRE 7.3% 11.2%

Pred(25%) 100.0% 75.0%

For the estimation models created, the MMRE is less than 16% (12.7% and 15.2% for Effort
and Cost respectively), also the SDMRE for both estimation models is low (7.3% and 11.2%).

On the other hand, the Prediction level (PRED (25%)) is high for both estimation models.
While the quality criteria for this case study were good, this could have happened when
the projects were similar in features, i.e. technology, business area, etc.

In the case study developed in [36], the objective was to show how a database could be
created in a practical way with a low cost and effort, and further work was defined as
“the assessment of the productivity models generated”. In this chapter, the assessment
of the productivity models as estimation models was made using the more often used
quality criteria in the literature.

5.	 Conclusions

In previous papers [31, 34, 35] the usefulness of the EPCU approximation approach was
reviewed. Some of the advantages of this approximation approach were the following:

•• Does not require local calibration and is useful when there are no historical data
available.

•• Is less expensive to calibrate than the other approximation approaches, which re-
quire historical data.

•• Exhibits good behavior, even when the individual is not acquainted with the COSMIC
method.

•• Exhibits good behavior, even when the requirements were not fully known.

•• Enables systematic replication of the information.

In this chapter, eleven (11) industry projects, which were not measured using any FSM
method, were considered for gathering their COSMIC functional size via the approxima-
tion approach.

307CHAPTER # 16 - CREATING AN ESTIMATION MODEL FROM FUNCTIONAL SIZE APPROXIMATION USING THE EPCU APPROXIMATION APPROACH FOR COSMIC (ISO 19761)

With the functional size approximated for seven projects, productivity models that co-
rrelate functional size with the resource data of the projects (effort and cost), were ge-
nerated. The productivity models were used to generate estimation models. [28]

With this practical way to determine the functional size for past projects, the need to
have a database and formal estimation model could be tackled. This reduced the time
for acquiring a confidence database and estimation models for organizations.

Once the database was created and after it had been used by organizations, improve-
ments such as employing the full COSMIC method, or adding new projects could be in-
tegrated incrementally, and it will improve the estimation results.

In this chapter, the benefits of the EPCU approximation approach were exploited in order
to create a database and estimation models with low cost and effort, because there is
no need for a local calibration and the utilization of the EPCU approximation approach
is automated in a mechanism that could be accessed via www.mepe.com.mx, reducing
the calculation effort and the COSMIC knowledge required.

Because the EPCU model is a formal model, that has been tested for approximation of
COSMIC functional size [31, 34, 35], and because it enabled the creation of database and
estimation models with a low cost and effort, the use of the approach proposed in this
chapter contributes to mature software engineering.

6.	 Further work

This chapter proposes a solution for generating historical database and estimation mo-
dels in a formal but practical way, utilizing an approximate sizing approach by means
of the COSMIC method, keeping in mind the reduction of the cost and effort required to
gather a historical database.

An interesting work could be utilizing a functional measurement with the standard COS-
MIC method in order to compare the real functional sizes against the approximated
ones.

7.	 References

[1] 	 F. Valdés-Souto, Design of A Fuzzy Logic Estimation Process for Software Projects:
Estimation of Projects in a Context of Uncertainty EPCU Model. Germany: LAP LAM-
BERT Academic Publishing, 2012.

308 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

[2] 	 T. de Marco, Controlling Software Projects. Englewood Cliffs, N.J.: Prentice Hall, 1982.
[3] 	 O. Morgenshtern, T. Raz, and D. Dvir, “Factors Affecting Duration and Effort Estima-

tion Errors in Software Development Projects,” Inf. Softw. Technol., vol. 49, no. 8, pp.
827–837, 2007.

[4] 	 B. F. Bourque, Pierre, S. Oligny, A. Abran, “Developing Project Duration Models in
Software Engineering,” J. Comput. Sci. Technol., vol. 22, pp. 348–357, 2007.

[5] 	 P. K. Suri and P. Ranjan, “Comparative Analysis of Software Effort Estimation Techni-
ques,” Int. J. Comput. Appl., vol. 48, no. 21, pp. 12–19, 2012.

[6] 	 K. Pillai and V. S. Nair, “A Model for Software Development Effort and Cost Estima-
tion,” Softw. Eng. IEEE Trans. Softw. Eng., vol. 23, no. 8, pp. 485–497, 1997.

[7] 	 L. H. Putnam, “A General Empirical Solution to the Macro Software Sizing and Esti-
mating Problem,” IEEE Trans. Softw. Eng., vol. SE-4, no. 4, pp. 345–361, 1978.

[8] 	 A. J. Albrecht and J. E. Gaffney, “Software Functions, Source Lines of Codes and De-
velopment Effort Prediction: A Software Science Validation,” IEEE Trans. Softw. Eng.,
vol. 9, no. 11, pp. 639–648, 1983.

[9] 	 T. K. Abdel-Hamid and S. E. Madnick, “Impact of Schedule Estimation on Software
Project Behavior.,” IEEE Softw., vol. 3, no. 4, pp. 70–75, 1986.

[10] 	 T. K. Abdel-Hamid, “Dynamics of Software Project Staffing: A system Dynamics Based
Simulation Approach,” IEEE Trans. Softw. Eng., vol. 15, no. 2, pp. 109–119, 1989.

[11] 	 T. Mukhopadhyay, S. S. Vicinanza, and M. J. Prietula, “Examining the Feasibility of a
Case-Based Reasoning Model for Software Effort Estimation,” MIS Q., vol. 16, no. 2, p.
155, 1992.

[12] 	 R. Madachy, “A Software Project Dynamics Model for Process Cost , Schedule and
Risk Assessment,” University of Southern California, 1994.

[13] 	 K. Srinivasan and D. Fisher, “Machine Learning Approaches to Estimating Software
Development Effort,” IEEE Trans. Softw. Eng., vol. 21, no. 2, pp. 126–137, 1995.

[14] 	 M. Shepperd, C. Schofield, and B. Kitchenham, “Effort Estimation Using Analogy,” in
Proceedings of IEEE 18th International Conference on Software Engineering, 1996,
pp. 170–178.

[15] 	 G. K. Michelle, M. Cartwright, L. Chen, and M. J. Shepperd, “Experiences Using Case-
Based Reasoning to Predict Software Project Effort,” in Proceedings of the 4th Inter-
national conference on empirical assessment and evaluation in software enginee-
ring, 2000, no. Ml, pp. 1–22.

[16] 	 I. Myrtveit and E. Stensrud, “A Controlled Experiment to Assess the Benefits of Esti-
mating with Analogy and Regression Models,” IEEE Trans. Softw. Eng., vol. 25, no. 4,
pp. 510–525, 1999.

[17] 	 A. Idri and A. Abran, “Towards A Fuzzy Logic Based Measures for Software Projects
Similarity,” in MCSEAI’2000 - Maghrebian Conference on Computer Sciences, 2000,
pp. 1–12.

309CHAPTER # 16 - CREATING AN ESTIMATION MODEL FROM FUNCTIONAL SIZE APPROXIMATION USING THE EPCU APPROXIMATION APPROACH FOR COSMIC (ISO 19761)

[18] 	 A. Idri and A. Abran, “Fuzzy Analogy: A New Approach for Software Cost Estima-
tion,” in 11th International Workshop on Software Measurement (IWSM’01), 2001, pp.
93–101.

[19] 	 A. Idri, A. Abran, and T. M. Khoshgoftaar, “Estimating Software Project Effort by Ana-
logy Based on Linguistic Values,” in Proceedings - International Software Metrics
Symposium, 2002, vol. 2002-Janua, pp. 21–30.

[20] 	R. Jeffery, M. Ruhe, and I. Wieczorek, “Using Public Domain Metrics to Estimate Soft-
ware Development Effort,” in Seventh International Software Metrics Symposium.
METRICS 2001, 2001, pp. 16–27.

[21] 	 P. Efe and O. Demirors, “Applying EVM in a Software Company: Benefits and Diffi-
culties,” in 2013 39th Euromicro Conference on Software Engineering and Advanced
Applications, 2013, pp. 333–340.

[22] 	Barry.W. Boehm, Software Engineering Economics, 1st ed. Englewood Cliffs, NJ, USA:
Prentice Hall, 1981.

[23] 	B. S. Barry W. Boehm, Chris Abts, A. Winsor Brown, Sunita Chulani, Bradford K. Clark,
Ellis Horowitz, Ray Madachy, Donald J. Reifer, Software Cost Estimation with COCO-
MO II, 1st ed. Upper Saddle River, NJ, USA: Prentice Hall, 2000.

[24] 	F. Valdés-Souto and A. Abran, “Industry Case Studies of Estimation Models Using
Fuzzy Sets,” in Software Process and Product Measurement, International Conferen-
ce, IWSM-Mensura 2007, 2007, pp. 87 – 101.

[25] 	 J. Gómez, “El Laboratorio de las TI,” Resultados del Estudio sobre Medición del
Tamaño del Software 2014, 2015. [Online]. Available: http://www.laboratorioti.
com/2015/02/11/resultados-del-estudio-sobre-medicion-del-tamano-del-soft-
ware-2014/. [Accessed: 10-Feb-2016].

[26] 	Common Software Measurement International Consortium (COSMIC)., “Guideline
for Early or Rapid COSMIC Functional Size Measurement,” 2015.

[27] 	 M. Shepperd and C. Schofield, “Estimating Software Project Effort Using Analogies,”
Softw. Eng. IEEE Trans. Softw. Eng., vol. 23, no. 12, pp. 736–743, 1997.

[28] 	A. Abran, Software Project Estimation: The Fundamentals for Providing High Qua-
lity Information to Decision Makers, 1st ed. Hoboken, NJ, USA: John Wiley & Sons,
2015.

[29] 	A. R. Gray and S. G. MacDonell, “A Comparison of Techniques for Developing Predic-
tive Models of Software Metrics,” Inf. Softw. Technol., vol. 39, no. 6, pp. 425–437, 1997.

[30] 	C. Symons, “The Performance of Real-Time, Business Application and Component
Software Projects,” 2011.

[31] 	 F. Valdés-Souto and A. Abran, “COSMIC Approximate Sizing Using a Fuzzy Logic Ap-
proach: A Quantitative Case Study with Industry Data,” in 2014 Joint Conference of
the International Workshop on Software Measurement and the International Con-
ference on Software Process and Product Measurement, 2014, pp. 282–292.

310 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

[32] 	 L. Santillo, “Early and Quick COSMIC FFP Overview,” in COSMIC Function Points:
Theory and Advanced Practices, A. A. Reiner Dumke, Ed. Boca Raton, FL, USA: CRC
Press, 2011, pp. 176–191.

[33] 	R. Meli, “Early Function Points: A New Estimation Method for Software Projects,” in
ESCOM 1997, 1997, pp. 1–10.

[34] 	F. Valdés-Souto and A. Abran, “Improving the COSMIC Approximate Sizing Using the
Fuzzy Logic EPCU Model,” in Joint Conference of the 25rd International Workshop on
Software Measurement & 10th International Conference on Software Process and
Product Measurement - IWSM-MENSURA 2015, 2015, pp. 192–208.

[35] 	F. Valdés-Souto and A. Abran, “Case Study: COSMIC Approximate Sizing Approach
Without Using Historical Data,” in Joint Conference of the 22nd International Work-
shop on Software Measurement and the 2012 Seventh International Conference on
Software Process and Product Measurement, 2012, pp. 178–189.

[36] 	F. Valdés-Souto, “Creating a Historical Database for Estimation Using the EPCU Ap-
proximation Approach for COSMIC (ISO 19761),” 4th Ed. Int. Conf. Softw. Eng. Res. In-
nov., no. Iso 19761, 2016.

311

Chapter # 17
A Representation Based in

SEMAT Kernel of the Test
Planning Process According to

ISO/IEC/IEEE 29119-2 Standard

1.	 Introduction

Software engineering seeks standardization and normalization processes and a com-
mon ground of key elements that constitute a kernel, providing to software analysts use
it in different phases of the lifecycle, as a set of methods and best practices to ensure
the software product quality. Quality assurance is the purpose of software testing, per-
forming verification and validation during the lifecycle of its construction [1].

In [2], it states that quality is the degree of a set of features meets the requirements, in-
dicating satisfaction in the software product by stakeholder. SEMAT includes a kernel wi-
dely accepted by the software development community, extensible to other specific uses
simple language to describe methods and best practices, looking for standardization and
normalization process elements. Test Planning Process applies mainly to develop the Test
Plan. Depending on the specific phase or extent of the test to evaluate, it can be a Project
Test Plan or a Test Plan. This chapter proposes a representation the SEMAT kernel of thread
Test Planning Process of Organizational Process of ISO/IEC/IEEE 29119-2 Standard [3].

This chapter is organized as follows: Section 2 presents the most relevant concepts of
SEMAT, management of software testing and Planning Software Test; Section 3 descri-

Fabio Alberto Vargas Agudelo,
Dario Enrique Soto Duran,
Juan Camilo Giraldo Mejía
Grupo de Investigación en Ingeniería de
Software del Tecnológico de Antioquia
- GIISTA
Tecnológico de Antioquia
Medellín, Colombia
{fvargas,dsoto,jgiraldo1}@tdea.edu.co

Claudia Elena Durango Vanegas
Grupo de Modelamiento y Simulación
Computacional GIMSC
Universidad de San Buenaventura
Medellín
Medellín, Colombia
claudia.durango@usbmed.edu.co

312 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

bes Planning Software Test thread SEMAT by a representation based on SEMAT kernel;
the conclusion and future work relate to this experience are provided in Section 4.

2.	 Theoretical Framework

2.1	 SEMAT (Software Engineering Method and Theory)

SEMAT is based on a strong theory, with approved principles and best practices to sup-
port the process of redefining software engineering. It includes a kernel of elements and
simple language to describe methods and best practices. The kernel contains a small
number of “things we always work with” called alphas: opportunity, stakeholders, requi-
rements, software system, work, team and way to working, and “things we always do” ca-
lled activity spaces like to explore possibilities, understand stakeholder needs, prepare
to do the work, and others, for developing system software (Figure 1) [4]. SEMAT allows
to organize interesting aspects in three areas customer (green), solution (yellow) and
endeavor (blue). Additionally, it involves alphas, activity spaces, activities, best practices,
methods, patterns and work products (see Table 1) [5].

Figure 1. Alphas and Activity Spaces in software system development process [6]

Table 1. Semat Core Elements [5]

Element Description Element Description

Alpha

Describes things that a
team should manage,
produce and use in the
process of development,
maintenance and
support. SEMAT identifies
seven alphas (Figure 1).

Activity Space

Represents the essential
things should be
performed to develop the
software. SEMAT defines 15
activity items (Figure 1).

This table continues on the following page ––––––>

313CHAPTER # 17 - A REPRESENTATION BASED IN SEMAT KERNEL OF THE TEST PLANNING PROCESS ACCORDING TO ISO/IEC/IEEE 29119-2 STANDARD

Activity

Defines one or more
types of work products
and one or more work
types, as well as giving
guidance on how to
use them in a practical
context.

Practice

This is a group of SEMAT
kernel elements necessary
to express the work guide
with a specific target.

Pattern

This is a description of a
practical structure.

Work product

This is an artifact of value
and relevance to the effort
of software engineering.
A work product can be
a document, a piece of
software, a software test
or the preparation of a
training.

2.2	 Software Test

In literature, there are various definitions of Software Testing like “activity in which a
system or component runs under controlled conditions, the results are recorded and the
evaluation is done on some aspect of the system or component” [7]. ISO/IEC/IEEE 29119
standard software testing is defined as “test planning, controlling, analyzing, designing,
implementing and executing. It also allows the evaluation of reporting representation,
and closing software test” [8].

Software testing is focused exclusively on the lifecycle in order to ensure that the pro-
duct is built according to the design [8]. Within the steps of software testing are pre-
paration, planning, execution, analysis, and monitoring [9]. This corresponds to tests
as well as development software product has a lifecycle that characterizes them and
immediately initiated the development of the project plan starts with the specification
requirements [10]. Implementing the lifecycle testing from test plan based on the project
plan. Following this and based on the requirements specification the tests are perfor-
med [11]. Consequently, software testing is considered as a parallel to the development
process that allows evaluation process from different aspects and behavior of a system
or component.

2.3	 ISO/IEC/IEEE 29119-2 Standard

Testing process is supported on the ISO/IEC/IEEE 29119-2 Standard covers the processes
of organization, management level testing, and dynamic level of evidence. This standard
has a testing approach based on risks, corresponding to a recommended method for
defining the strategy to focused and prioritized tests [2].

314 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

2.4	 Organizational Test Processing

The process of testing organization, a testing policy is established in order to express the
expectations of organization management and focus on commercial terms of software,
as well as allowing involve people outside the test as executives and managers. The test
policy is a guide in formulating strategic and organizational performance in the testing
process. The strategy identifies the requirements and limitations of processes at mana-
gement level and dynamics of the evidence. The Organizational Test Process is generic,
and directs the strategy project test to run (Figure 2) [3]. Examples of Organizational Test
are policies, strategies, processes, procedures, and others test assets of the organization.

2.5	 Test Planning Process

Planning process allows establish scope, resources, strategy and, activities testing from
a risk-based approach. The purpose of the process is to define the test plan of the pro-
ject or the specific phase of the product. The plan is an input essential to ensure the
success of the project, it allows to establish a base line for implementation, monitoring
and control.

Planning includes the activity of understanding the context. In this instance, relevant
information is searched in order to apply the tests. The purpose of the test is to identify
requirements, models and software devices to be evaluated taking into account the ve-
rification and validation processes that integrate testing concept. To extend the scope of
understanding the context should know the assets of organizational processes and en-
vironmental factors that affect the testing project. Organizational process assets refer to
documents such as organizational policies and strategies testing. Environmental factors
relate to standards, software development methodologies and regulations applicable to
the business application framework.

Once the context is understood, the development of test plan begins by identifying the
factors for the success of the tests, defining a test plan that integrates the following
elements: scope, risks, types and test techniques, actors, test metrics, effort and time
estimates, tools, and schedule.

The goal of the tests is ensuring the stability of the business instead of test the possible
scenarios of the software. The essential factor in the success of the test is to identify
risks that compromise rules and business processes, it means the risks assumed from
business with possible defects that may have the software in production. Therefore, it
must make an identification, characterization, analysis, and risk mitigation.

315CHAPTER # 17 - A REPRESENTATION BASED IN SEMAT KERNEL OF THE TEST PLANNING PROCESS ACCORDING TO ISO/IEC/IEEE 29119-2 STANDARD

To identify the risks of a software project, the sources that originate should take into
account such as [12].

•• Engineering Product: These risks are oriented to the technical aspects of the work
to be done. This type of risk refers to the risks facing the business at the time that
the programs have an error in production.

•• Development environment: refers to the methods, procedures and tools used to
make the product.

•• Program restrictions: contractual, organizational and operational factors that affect
the software developed.

The design of a successful test strategy from of an appropriate risk analysis taking into
account the following variables: probability and impact. This analysis generates the risk
prioritization and allows for a mitigation approach. Mitigation should integrate elements
like factors or relevant software criteria and products to be tested.

Testing Strategy should determine the scope of the test, test type, characteristics to be
tested, test techniques, completion criteria, suspension and resumption of testing. The
strategy should consider restrictions in the project, product and organization, to con-
form the bases to project management, scope, time, and cost. Consequently, the plan of
human resources required for execution of the strategy and schedule of activities with
their respective principals are established. Finally, the test plan must be approved by the
team that participated in its design and disseminated different project stakeholders. The
above process can be verified graphically in Figure 3.

3.	 Background

According to [13], associated elements are identified with the process of validation and
verification of software quality ISO / IEC / IEEE 29119-2 Standard. The main elements are
associated with best practices of RUP “Verify software quality”, the alpha “Software Sys-
tem”, Work Products of Test Planning Process (Figure 4). This chapter does not describe
a representation of the Test Planning Process.

Figure 2. Activity of Organizational Test Process [3]

316 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Figure 3. Test Planning Process [3]

Verify
software
quality

Software
System

Test Plan Test Results Test Plan Updates

Work on

Test Analyst
<Rol>

Test Completion Report

Figure 4. Phase Test Process Model [13]

317CHAPTER # 17 - A REPRESENTATION BASED IN SEMAT KERNEL OF THE TEST PLANNING PROCESS ACCORDING TO ISO/IEC/IEEE 29119-2 STANDARD

4.	 Representation based in SEMAT Kernel
of Test Process Model of ISO/IEC/IEEE
29119-2:2013 Standard

A relevant aspect of representation is identifying the constant elements of the Test Pro-
cess Model in SEMAT Kernel. These elements are best practices, area of interest, alphas,
activity and, activity spaces.

4.1	 Best Practice

RUP identifies best practices and incorporates six best practices of software in proces-
sing model: requirements management, component-based architecture, visual model
software, check software quality, change control software and software development
architecture iteratively (Figure 5). In our project, we focus on “Verify Software Quality”.

RUP

Develop
Software
Iteratively

Manage
requirements

Visually
Model

Software

Control change
to software

Verify
software
quality

Use
Component-

based
Arquitectures

Figure 5. SEMAT kernel representation in six RUP best practices [13]

4.2	 Concern Areas

Test Process Model focuses on the area of interest “Solution”. This area contains the
elements that relate to the specification and development of software system. The ele-
ments found in this area are of color yellow (Figure 1).

4.3	 Alpha

Test Process Model is associated with alpha “Software System” because these tests are
associated with software to develop (Figure 6) [13].

318 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Software
System

Figure 6. SEMAT Alfa representation [13]

4.4	 Areas of activity

Next step is to identify the activities and work products of Test Planning Process. Below
this activity is shown in Table 2.

Table 2. Activity and work product of Test Planning Process of ISO/IEC/IEEE 29119-2:2013 Standard

Activity Work Product

Understand context Test Requirements
Communicate Plan

Organize Test Plan Development Scope statement (WBS)
Registration Actors

Identify and organize Risks Risk Plan
Design Test Strategy
Determine Staffing and Scheduling

Specification of scope (Schedule, staffing
profile)

Record Test Plan
Gin Consensus on Test Plan
Communicate Test Plan and Make Available

Test Plan

In order to make the representation Table 2 with phases (Figure 7), best practices and
identified alpha [13] are used. In the representation are considered the elements identi-
fied in Table 2. The practice “Verify software quality” is associated with the phases of the
ISO/IEC/IEEE Standard 29119-2: 2013 [13], where the space activity “Test the System” and
activities phases are found.

Organizational
Test Process

<Phase>

Test Managent
Processes
<Phase>

Dynamic Test
Processes
<Phase>

Figure 7. SEMAT core representation ISO/IEC/IEEE 29119-2:2013 Standard [13]

319CHAPTER # 17 - A REPRESENTATION BASED IN SEMAT KERNEL OF THE TEST PLANNING PROCESS ACCORDING TO ISO/IEC/IEEE 29119-2 STANDARD

In Figure 8 shows Process Test phase containing space activity to test the system and
activities. In Table 2 is shown these elements are associated with the practice “Verify
Software Quality”.

In Figure 9 shows, the role Test Analyst works on all products in work seen in Table 2, there
are also related to alpha “Software System” of the best practice “Verify Software Quality”.

Verify
software
quality

Test the System

Understand
Context

Organize Test
Plan

Development

Identify &
Analyse Risks

Test Managent
Processes
<Phase>

Contains
Identify Risk
Mitigation

Approaches

Design Test
Strategy

Determine
Staffing and
Sheduling

Record Test Plan Gain Consensus
on Test Plan

Comunicate Test
Plan and Make

Available

Figure 8. SEMAT core representation of activities of Test Planning Process

Verify
software
quality

Software
System

Test Requirement Comunicate Plan Scope statement

Work on

Test Analyst
<Rol>

Registration Actors

Risk Plan
Specification of

scope Test Plan

Figure 9. SEMAT core representation of work products from Test Planning Process

320 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

5.	 Conclusions and future work

To make the process of software testing is relevant to identify and mitigate risks in order
to define suitable strategies on context and ensure the stability of the product in the
production environment.

The representation of the planning process of testing on SEMAT kernel describes the
activities and work products that serve for supporting to execute and monitoring the
test project.

SEMAT Kernel representation of the ISO/IEC/IEEE Standard 29119-2: 2013 allows the users
a better understanding of the elements that comprise it. So, this representation allows
identify and follow a sequential order of phases for implementation, and the activities to
develop products associated in each activity. Another aspect to highlight is Test Analyst
to obtain the expected results.

The representation allows demonstrating traceability and consistency in practice veri-
fication software quality with the phases of the rules, where the products work and the
role associated.

6.	 References

[1] 	 Myers, G. J., Sandler, C., Badgett, T., & Thomas, T. M. “The Art of Software Testing”. New
Jersey, USA: Wiley, 2004.

[2] 	 ISO. Norma internacional ISO 9000 - Sistemas de gestión de la calidad - Fundamen-
tos y vocabulario. Ginebra: ISO 9000, 2005.

[3] 	 IEEE, International Standard ISO/IEC/IEEE 29119-2: Software and systems enginee-
ring Part 2: Test Processes. 2013, pp. 1–68.

[4] 	 I. Jacobson, P. Ng, and P. E. Mcmahon, “La Esencia de la Ingeniería de Software: El
Núcleo de SEMAT”. vol. 1, no. 3, pp. 71–78, 2013.

[5] 	 C. E. Durango Vanegas and C. M. Zapata Jaramillo, “Una representación basada en
SEMAT y RUP para el Método de Desarrollo SIG del Instituto Geográfico Agustín Co-
dazzi” Ing. USBmed, vol. 6, no. 1, pp. 24–37, 2015.

[6] 	 M. J. Simonette, L. Lago, and E. Spina, “Extending SEMAT kernel to deal with develo-
per error,” Int. J. Circuits, Syst. Signal Process., vol. 8, pp. 253–258, 2014.

[7] 	 International Standard ISO/IEC/ IEEE 24765 First edition, 2010.
[8] 	 Glenford, J. Wiley, J. The art of software testing, 2004.
[9] 	 Tian, J. Software Quality Engineering: Testing, Quality Assurance, and Quantifiable

Improvement. Chichester, England: Wiley-IEEE Press, 2005.

321CHAPTER # 17 - A REPRESENTATION BASED IN SEMAT KERNEL OF THE TEST PLANNING PROCESS ACCORDING TO ISO/IEC/IEEE 29119-2 STANDARD

[10] 	Sommerville, I. Ingeniería del software. Madrid: Pearson. Séptima edición, 2005.
[11] 	 Barranco, J. Metodología del análisis estructurado de sistemas. España: Comillas,

2001.
[12] 	 Medina, Y. 2009.Taxonomía Ajustada para la Identificación de Riesgos en los Proyec-

tos de Desarrollo de Software de la Universidad de las Ciencias Informáticas. [Tesis]
Ciudad de la Habana: UCI, 2009.

[13] 	 Vargas, F.A. Soto, D.E, Durango, C.E, Giraldo, J.C. Representación en el Núcleo de SE-
MAT de la Norma ISO/IEC/IEEE 29119-2 para identificar patrones en Pruebas de
Software. 4to. Congreso Internacional de Investigación e Innovación en Ingeniería
de Software, CONISOFT, 2016.

322

Chapter # 18
A KAOS representation
by using the SEMAT kernel

Luis Fernando Castro Rojas, Santiago Montaño Lince, and Esperanza Espitia Peña
Departamento de Ingeniería de Sistemas y Computación
Universidad del Quindío
Armenia, Colombia
{lufer, slincem, eespitia}@ uniquindio.edu.co

1.	 Introduction

The requirements analysis includes the specification and validation of the services to be
provided by the system, as well as the operational constraints [8,15]. In order to complete
this analysis, several methods have been implemented. Some of these methods are fo-
cused on the goal-oriented requirement specification: TROPOS, I* [18], KAOS (Knowledge
Acquisition Automated Specification) [2,4,10], and GBRAM, which are suitable to be repre-
sented by using the SEMAT (Software Engineering Method and Theory) kernel [13]. These
methods define software requirements from organizational objectives, and provide a
framework for relating organizational goals and problems in the project formulation for
making decision [12].

The aforementioned approaches exhibit some shortcomings related to multiple inter-
pretations which are caused by ambiguity, overgenerality, synonymy, and vagueness [1].
An analysis of KAOS revealed several limitations associated with redundancy, overload,
incompleteness, and lack of definitions [3]. Babar, Wong, and Gill in [6] present a study
based on five major goal-oriented approaches (i*, KAOS, GBRAM, NFR, MAP). The authors
exhibit two fundamental weaknesses presented by such approaches, which limit their
practical use: (1) strategic alignment concepts are misunderstood in the context of the
information system management discipline and (2) a critical analysis of the goal-orien-
ted approaches in order to assess their suitability for modeling strategic alignment con-
cepts is absent.

Additionally, these methods lack an adequate representation and specification of the
organizational objectives, problem domain and system objectives [5].

323CHAPTER # 18 - A KAOS REPRESENTATION BY USING THE SEMAT KERNEL

Nowadays, the software industry revolves around the standardization of processes
and the union of elements under a common core [13]. SEMAT is a structured fra-
mework that includes a kernel for establishing a common ground for the methods
and practices contained therein. Therefore, we propose the representation of KAOS by
using the SEMAT kernel, in order to provide a theoretical foundation related to GORE
methods.

The Chapter is organized as follows: In Section II we describe the theoretical aspects
of the GORE methods, especially KAOS. In Section III we describe a proposal for the
inclusion of KAOS in the SEMAT kernel. Finally, in Section IV we present some conclu-
sions and future work.

2.	 Theoretical aspects of the gore methods

2.1	 GORE METHODS

Gore (Goal Oriented Requirement Engineering) methods are a set of approaches that
promotes the use of goals as the basis for the software requirements, including, in this
way, a point of view intentional, that is, the purpose of the system. The introduction of
a point intentional view allows stakeholders to express their needs in a more natural
manner, focusing on what they want (your goals) versus how to achieve them (conven-
tional requirements). From the goals, requirements can be derived as ways to achieve
these goals [13].

2.2	 TROPOS

This proposal, based on I star represents a methodology for the organization modeling,
widely used in the early processes of software requirements elicitation. This methodo-
logy allows to capture not only the what? Or the how? , but also the why? Of software
development in the organization. This methodology realizes a detailed description of
the system dependencies develop and achieve adequate specification of functional and
nonfunctional requirements [11,13].

2.3	 I*- I star

It is a modeling framework of organizational contexts based on the dependency rela-
tionships between the actors. The main idea is that the actors depend on each other
to achieve the goals, and to provide the resources required for doing the tasks and for
accomplishing the goals [9]. In this framework, an actor is an active entity that performs

324 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

actions to achieve goals through the exercise of “know-how” and an actor is considered
a “super class” to agent, position and role [9, 13].

This goals oriented language includes nodes that represent actors, goals, tasks and re-
sources, addition to a set of relationships between them. Also, it is an approach that
uses the idea of softgoal. The main feature of the business modeling on other fields of
requirements engineering is the importance of the agents. An agent is defined as an
entity that exists in an organization, that has goals and that can perform tasks or use
resources to achieve those goals or help other agents achieve their goals [13].

2.4	 GBRAM (Goal-Based Requirements Analysis Method)

GBRAM is a goal-based approach for identifying, elaborating, refining and organizing
goals for requirements specification. GBRAM considers the initial identification and abs-
traction of goals for all available information sources. Lastly, the goals are translated into
operational requirements by generating a specification requirement document (SRD) [13].

The GBRAM method includes two types of activities: goal analysis and goal refinement.
Goal analysis encompasses the exploration of documentation for goal identification fo-
llowed by the organization and classification of goals. Goal refinement involves the evo-
lution of goals from the moment they are identified to the moment they are translated
into operational requirements for the system specification [13].

2.5	 NFR

The NFR framework focuses on the representation of non-functional requirements on
the designed software system through interrelated goals. Three types of goals are defi-
ned: NFR, satisfying and argumentation goals. The last two model design decisions and
arguments respectively. The NFR goals are soft goals which can be refined using different
types of relationships describing how the satisfying of the offspring relates to the satis-
fying of the parent goal. A labeling procedure is defined for determining the degree of
satisfying of each node in the goal structure [13].

2.6	 MAP

A map is a diagram composed of nodes and edges. Nodes are intentions to realize and
edges are strategies to reach these intentions. An edge enters a node if its associated
strategy can be used for achieving the target intention. Since there can be multiple edges
entering a node, a map is able for representing several ways to achieve an intention [13].

325CHAPTER # 18 - A KAOS REPRESENTATION BY USING THE SEMAT KERNEL

2.7	 KAOS (Knowledge Acquisition in automated
specification)

KAOS is a GORE method that raises the representation of a goals tree, which focuses on
perform the process of formal analysis of requirements. The process for the mapped of
KAOS goals diagram required that the secondary goals that subrogate the general goals
is defined, then present them in goals more elementary than subrogate and so forth un-
til you reach goals considered elementary or atomic or until expectations, requirements
or domain properties [13].

Table I shows a set of activities for elaborating a KAOS model, and Table II shows the
basic components of KAOS. There is a way to express a set of tasks and work products.
This is called “activities”, and they define guidelines about how these tasks and work
products should be used in practice [27].

Several authors have described some activities that KAOS uses to make its models [28].
These activities could be represented by SEMAT, using his activity spaces.

According to Figure 1, these activity spaces are focused on “Things to do” [27], in order to
contemplate some important aspects such as the tasks of the model.

For each activity, there is an activity space where such an activity could be associated by
using the relationships supported by SEMAT.

One of the relationships is “part of” and is used for joining activity spaces with activities.
The other one is “Activity association” that is used for sequencing activities.

Figure 1. Activity spaces of the SEMAT essence [30].

326 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Table I. activities for elaborating a KAOS model from [28].

Activity Sub-Activity Description
Assign goals to
agents

For each ASSUMPTION, the agent responsible is
identified.

Goal elicitation

Asking HOW questions

Throught repeatedly asking how a goa lis
satisfied, ner sub-GOALS are addede to the
initial set until the participants feel the level
od detail described is adequate. This creates or
extends the GOAL TREE.

Asking WHY questions

Througt repeatedly asking why GOALS are
included, new highlevel GOALS are added to the
initial set until the underlying drivers for the
system are discovered. This creates or extends
the GOAL TREE.

Defining objetives
functions

One or more OBJETIVE FUNCTIONS are created
for each GOAL

Defining quality attibutes One or more QUELITY ATTRIBUTES are created
for each GOAL

Goal
identification

The inicial set of GOALS is created in discussion
of all relevant stakeholders. GOALS may be
preliminary at this state and subject to changes

Negotiating
conflicts

Participants identifiy conflicting GOALS and
negotiate which GOAL is more important
and should be kept. The conflicting GOAL is
removed.

Table 2. Basic components of kaos.

Component Information

Object Things of interest in the composite system whose instances may evolve
from state to state. Objects can be entities, relationships, or events [17].

Operation Input-output relations over objects. Operation applications define state
transitions [17].

Agent
Kind of object that acts as a processor for operations. Agents are active
components that can be humans, devices, software, etc. Agents perform
operations that are allocated to them. KAOS lets analysts specify which
objects are observable or controllable by agents [17].

Goal

It is defined as a “prescriptive statement of intent about some system
whose satisfaction in general requires the cooperation of some of
the agents forming that system”. Goals in KAOS may refer to services
(functional goals) or to quality of services (non-functional goals). In
KAOS, goals are organized in the usual AND/OR refinement abstraction
hierarchies [17].

Requirement A goal effectively assigned to a software agent [25].
Property
domain

It is a descriptive assertion about object in the environment which holds
independently of the system-to-be [25].

Expectation A goal effectively assigned to an environment agent [25].

327CHAPTER # 18 - A KAOS REPRESENTATION BY USING THE SEMAT KERNEL

A collection of specifications in KAOS is a set of the following models: operating model,
object model, and objective model. In general, each building on the KAOS language has
two levels of structure: the outer graphical semantic layer where the concept is declared
together with its attributes and relationships to other concepts, and the inner formal
layer for formally defining the concept [17, 19, 22].

Figure 2 illustrates some basic notation for representing models by using KAOS.

Goal

AgentExpectation

Requirement

Property domain

Figure 2. Basic notation for representing models by using KAOS from [24].

Building the goal diagram in KAOS is a task made by the analyst. This diagram is defined
by interpreting the knowledge acquired about the area and the organization. Besides,
this knowledge is based on the meetings with the stakeholders and the exploration
about relevant documents [5].

The creation of a KAOS goal diagram exhibits some limitations: a set of verbs that can
limit the definition of the different goals that represent the problem domain is absent.
Hence, the analyst can use whatever verb he wants, and the diagram is conditioned by
the analyst’s subjectivity [21]. In order to overcome this limitation related to the subjec-
tivity, Zapata et al. [24] propose the usage of pre-conceptual schemas, which allow for a
closer approximation to the stakeholder discourse.

The structure of KAOS is represented hierarchically, connecting requirements and goals
in graphical notation in an upward direction. The top goals are strategic objectives for
the business, and the low side in the diagram reaches closer to the low level require-
ments [20].

2.8	 SEMAT

Acronym of Software Engineering Method and Theory was founded by Ivar Jacobson,
Bertrand Meyer, and Richard Soley, who felt the time had come to fundamentally change

328 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

the way people work with software-development methods. They wrote a call for action
statement, which in a few lines identifies a number of critical problems, explains why
there is a need to act, and suggests what needs to be done. The call for action is: Some
areas of software engineering today suffer from immature practices. Specific problems
include: the prevalence of fads more typical of the fashion industry than an engineering
discipline; the lack of a sound, widely accepted theoretical basis; the huge number of
methods and method variants, with differences little understood and artificially magni-
fied; the lack of credible experimental evaluation and validation and the split between
industry practice and academic research [13].

SEMAT identify a common ground for software engineering. This is manifested as a kernel
of essential elements that are universal to all software-development efforts, and a simple
language for describing methods and practices. Such kernel defines a set of Alphas repre-
senting essential things to work with (e.g., Opportunity, Stakeholders, Requirements, etc.)
and a set of Space Activities representing the essential things to do (e.g., Explore Possibili-
ties, Understand Stakeholder needs, Understand the Requirements, etc.). Methods, practi-
ces and the Essence Kernel itself are defined using the Essence Language [13].

The Kernel of SEMAT facilitates control over the activities performed during the software
development process within which the following are noteworthy [13]:

Stakeholders: identified of stakeholders those are affecting the development of the soft-
ware application; define the responsibilities of each stakeholder; the stakeholders are
Authorizes to carry out their responsibilities within the team; the stakeholders define
theirs expectative and needs to achieve with the software development.

Opportunity: Identified a commercial, social or business opportunity for the development
of software to implement; determined a need a to be solved by a software application; the
impact that will have software defined; the results are clear and quantified; defined that
costs are less than the aggregate value that the software will bring for business.

Requirements: The purpose of the new system is established; define the requirements
among the stakeholders and the team; establish and clarified the conflicts that may
have the requirements; establish the priority requirements; agreed that the require-
ments are relevant with the business; the specified requirements reflecting what the
system does and what does not do.

Software System: Identified the hardware platforms; selected the programming langua-
ge and technologies; selected the software architect; defined boundary system; defined

329CHAPTER # 18 - A KAOS REPRESENTATION BY USING THE SEMAT KERNEL

an executable version for purpose and supports functional and non-functional testing;
the system is operated by stakeholders; the functionality system is tested; the system is
documented; the system is using in an operational environment.

Work: Identified that work has been requested; existing all conditions for starting the
work; the progress of work is monitored; the completion of the work is verified; Work is
officially ends.

Team: It has a clear mission for the team; it has a committed team; there is teamwork;
works efficiently and effectively; controls in fulfilling the mission; produces Software
System; performs and plans Work

Way of Working: principles and constraints are established; practices and tools are defi-
ned; method of work is used.

3.	 Integration into the semat kernel

This proposal is based on a previous work presented by Castro et al. [31]. SEMAT has a
kernel that provides a common ground for methods and practices. This kernel has three
features: it is operable, practical and extensible [14].

In the actionable portion of the kernel some alphas corresponding to the things “to work
with” are defined: opportunity, stakeholder, requirements, system software, work, team
and way of working.

The subset of alphas needed for describing the KAOS constructs is shown in Figure 3.
Such a figure includes a set of universal alpha elements such as Opportunity, Stakehol-
ders, and Requirements, and their relationships. These elements belong to the Customer
and Solution areas of concern.

Figure 3. Subset of Alphas.

330 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

The next step is the inclusion of certain constructs such as elements of KAOS into the
kernel relating them with the alphas.

These constructs or components of the metamodel have a relationship with certain
alphas, which are related to the operable portion of the kernel [2]. Figure 4 shows the
representation of the KAOS method by using the SEMAT kernel. The KAOS approach is
mapped to the alphas of the kernel (i.e., placing Goal into Opportunity, Agent into Stake-
holder, Obtained goal-directed requirement into Requirements, etc.).

KAOS Opportunity

Requirements

Stakeholder

ScenarioConstraintGoal Property
domainRequirement

Object Action OperationRelationship

Expectation

EntityEvent

AgentClient Stakeholder

Obtained goal-
directed requirement

Figure 4. Alphas y Work Products representation.

 As a result, we can perceive how these constructs included in SEMAT can be properly
used for representing any model developed by KAOS. Figure 4 illustrates a case study by
using the KAOS notation. This Figure shows the representation of a goal model by using
KAOS. This Figure adapted from [23], presents a set of goals: Effective Passengers Rapid
Transportation, Safe Transportation, Train Progress, No Delay, No Train Collision, Doors
Closed While Moving, Block Speed Limited, No Trains On Same Block, and Worst Case
Stopping Distance Maintained.

According to [26], the Essence language is defined as a set of constructs which are lan-
guage elements defined in the context of a metamodeling framework. In this framework
all the constructs of the language are at level 2.

331CHAPTER # 18 - A KAOS REPRESENTATION BY USING THE SEMAT KERNEL

•• Level 3 – Meta-Language: the specification language, i.e., the different constructs
used for expressing this specification, like “meta-class” and “binary directed
relationship.”

•• Level 2 – Construct: the language constructs, i.e., the different types of constructs
expressed in this specification, like “Alpha”.

•• Level 1 – Type: the specification elements, i.e., the elements expressed in specific
kernels and practices, like “Requirements”.

•• Level 0 – Occurrence: the run-time instances, i.e., these are the real-life elements
in a running development effort.

An analyst using KAOS on a modeling project would be working at level 0. The goal set for
each model would be a level 0 instance of the “Goal” work product defined at level 1. This
is exactly analogous to the creation of Goals “Effective Passengers Rapid Transportation”,
“Rapid Transportation”,” Safe Transportation”, etc.

In order to define the dynamic semantics, it is necessary to refer to the inhabitants of
levels 1 and 0 as well as those of level 2. In order to make it clear at which level a named
term belongs, Essence uses the following naming convention [26]:

•• X (an unadorned name) is a language Construct at level 2, such as Work Product.

•• my_X (prefixed) is a Type at level 1 created by instantiating X. So if X is Work Product,
my_WorkProduct could be “Goal.”

•• my_X_instance is an Occurrence at level 0 by instantiating my_X. So if X is Work
Product, my_WorkProduct_instance could be the specific goal related to Rapid
Transportation.

Essence explicitly defines Domain classes, such as my_WorkProduct, that contains the
necessary instance properties (defined as EndeavourProperty instances from the meta-
model), that is to be endowed at enactment [26]. As can be seen, in Figure 9 by adding
the Goal instance to the class my_WorkProduct we can support the construct Goal as
defined in the KAOS specification.

So, each of goals in Figure 7 can be mapped in the SEMAT kernel as illustrated in Figure 9.

Comparing the KAOS specification and the Essence approach shows that both can be
supported with similar foundation. In this case, the Essence approach is separated into

332 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

a metamodel (i.e., writing system or language as understood in the OMG context) and the
Kernel providing the common starting ground.

Consequently, the KAOS goal instances illustrated in Figure 7 map to concepts in the Es-
sence Language as demonstrated in Figure 9.

In addition, the activities that are used by KAOS, could be represented in SEMAT activity
spaces as it is shown in Figure 5.

Figure 5. Activities in KAOS.

KAOS activities have a sequence, and this sequence also could be represented by SEMAT
as it is presented in Figure 6.

333CHAPTER # 18 - A KAOS REPRESENTATION BY USING THE SEMAT KERNEL

Figure 6. Sequence of KAOS activities from [27].

Each element of the model showed in Figure 5 can be represented by using the Semat
Kernel. This representation is illustrated in Figure 8. As we can see the basic elements
have been modeled. In addition, we use the role element in order to represent the
Analyst, who is charged with the task of elaborating the model. This role works on two
work products: Goal and Requirement. Such artifacts are associated with four activi-
ties: Assign goals to agents, Goal elicitation, Goal identification, and negotiating con-
flicts. These activities are grouped in several activity spaces as follows: Assign goals
to agents grouped by Coordinate activity, Goal elicitation and Goal identification grou-
ped by Understand stakeholder needs, and negotiating conflicts grouped by Understand
requirements.

334 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Figure 7. KAOS diagram defined by the Stakeholder adapted from [23].

Analyst
<Role>

Works on

Goal Requirement

Assign goals to
agents Goal elicitation Goal identification Negotiating

conflicts

Coordinate activity Understand
Stakeholders needs

Understand the
requirements

1…* 1…*

Figure 8. Integrated representation of a KAOS model by using the Semat Kernel.

Figure 9. KAOS goal represented by SEMAT based on [26]

335CHAPTER # 18 - A KAOS REPRESENTATION BY USING THE SEMAT KERNEL

4.	 Conclusions and future work

In this chapter we propose a representation of KAOS by using the SEMAT kernel. We face
some issues studied by [2], which are needed for achieving an adequate understanding
of their metamodel.

This work establishes a common ground for studying and integrating various methods
and practices. In order to achieve this, the proposed approach allows us map the ele-
ments into the elements used by the SEMAT kernel.

As future work, we can use the KAOS representation obtained for leading new works
which facilitate the understanding of the different GORE methods founded in the lite-
rature. Besides, other works fostering the inclusion of such methods in the industrial
context are required.

5.	 References

[1]	 I. J. Jureta, and S. Faulkner, “Clarifying Goal Models,” In Proc. Tutorials, posters, pa-
nels and industrial contributions at the 26th International Conference on Concep-
tual Modeling, Auckland, New Zealand, 2007, pp. 139–144.

[2]	 A. Dardenne, A. Van Lamsweerde, and S. Fickas, “Goal-directed requirements acqui-
sition,” Science of computer programming, vol. 20(1), 1993, pp. 3-50.

[3]	 R. Matulevičius, P. Heymans, and A. L. Opdahl, “Comparing GRL and KAOS using the
UEML Approach,” Enterprise Interoperability II. New Challenges and Approaches, 2007,
pp. 77–88.

[4]	 P. Espada, M. Goulão, and A. João, “A framework to evaluate complexity and complete-
ness of KAOS goal models,” in CAiSE’13 Proceedings of the 25th international conferen-
ce on Advanced Information Systems Engineering, Berlin: Springer, 2013, pp. 562-577.

[5]	 F. Vargas, and C. Zapata, “Modelo para la Especificación de requisitos iniciales de
software a partir de la relación sintáctica y semántica entre objetivos y problemas,”
Facultad de Minas Universidad Nacional de Colombia Sede Medellín, 2015.

[6]	 A. Babar, B. Wong, and A. Q. Gill, “An evaluation of the goal-oriented approaches
for modelling strategic alignment concept,” In 2011 Fifth International Conference
on Research Challenges in Information Science, Guadeloupe - French West Indies,
France, 2011, pp. 1–8.

[7]	 B. González-Baixauli, M. A. Laguna, and J. C. do Prado Leite, “Análisis de Variabilidad
con Modelos de Objetivos,” In WER, 2004, pp. 77-87.

[8]	 E. Kavakli, “Goal-oriented requirements engineering: A unifying framework,” Requi-
rements Engineering, vol. 6(4), 2002, p.p. 237-251.

336 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

[9]	 V. M. B.Werneck, A. D. P. A. Oliveira, and J. C. S. do Prado Leite, “Comparing GORE Fra-
meworks: i-star and KAOS,” In WER, 2009.

[10]	 G. Koliadis, and A. Ghose, “Relating business process models to goal-oriented requi-
rements models in KAOS,” In Advances in knowledge acquisition and management,
Springer Berlin Heidelberg, 2006, pp. 25-39.

[11]	 ITC-irst, and U. d. Trento, “The Tropos Methodology and its Metamodel,” 2006.
[12]	 R. Darimont, and M. Lemoine, “Goal-oriented Analysis of Regulations,” In ReMo2V,

2006.
[13]	 C. M. Zapata, L. F. Castro, F. A. Vargas, “GBRAM from a SEMAT Perspective,” Methods,

modeling, and teaching, 2014, vol. 3, pp. 21-26.
[14]	 I. Jacobson, P. W. Ng, P. E. McMahon, I Spence, and S. Lid-man, The essence of soft-

ware Engineering: applying the SEMAT kernel, Addison-Wesley, 2013.
[15]	 M. J. Escalona, and N. Koch, Ingeniería de Requisitos en Aplicaciones para la Web–

Un estudio comparativo, Universidad de Sevilla, 2002.
[16]	 M.A. Laguna, and B. González-Baixauli, “Product Line Requirements: Multi-Paradigm

Variability Models,” In WER, 2008.
[17]	 A. Lapouchnian, Goal-Oriented Requirements Engineering, Toronto, 2005.
[18]	 E. Yu, Modelling Strategic Relationships for Process Reengineering, Ph.D. Thesis,

University of Toronto, Toronto, 1995.
[19]	 J. Guzman, L. A. Lezcano and S. A. Gómez, “Characterization of the elements the goal

diagram KAOS from natural language,” revista Colombiana de tecnologías avanza-
das, vol. 1 (21), 2012, pp. 138-144.

[20]	 F. Almisned, and J. Keppensm,”Requirements Analysis: Evaluating KAOS Models,”
Journal of Software Engineering and Applications, vol. 3 (9), 2010, pp. 869-874.

[21]	 C. Zapata, and L.A Lezcano, “Characterization of goal diagram verbs”, Revista Dyna,
vol. 72 (158), 2009, pp. 219-228.

[22]	 A. van Lamsweerde, Goal-oriented requirements engineering: A guided tour, 2001.
[23]	 C. Ponsard, P. Massonet, A. Rifaut, J.F. Molderez, A. van Lamsweerde and H. Tran Van,

“Early verification of mission critical systems,” Electronic Notes in Theoretical Com-
puter Science, vol. 33, 2005, pp. 237-254.

[24]	 C.M. Zapata, L.A. Lezcano, and P.A. Tamayo, “Preconceptual-schema-based repre-
sentarion of KAOS goal diagram,” In Computing Congress (CCC), 2011 6th Colombian,
2011, pp.1-6.

[25]	 R. Matulevičius, and P. Heymans, Analysis of KAOS Meta-model. Namur University
Computer Science Department, Belgium, 2005

[26]	 OMG, “Essence - Kernel and Language for Software Engineering Methods, Initial
Submission - Version 1.1,” Object Management Group (OMG), OMG Document ad/15-
12-02, December 2015.

[27]	 C.M. Zapata, “Cosas que siempre hacemos: Los espacios de actividad”, Junio 2016.

337CHAPTER # 18 - A KAOS REPRESENTATION BY USING THE SEMAT KERNEL

[28]	 J. Buis, “GORE: Goal Oriented Requirements Engineering,” marzo 2014.
[29]	 L. Duboc, E. Letier, D.S. Rosenblum, and T.A. Wicks, “A case study in eliciting scalabi-

lity requirements,” International Requirements Engineering, RE’08. 16th IEEE, 2008,
pp. 247-252.

[30]	 C.M. Zapata, M.D. Rojas, R.E Arango, and L.D. Jiménez, “SEMAT GAME: Applying a pro-
ject management practice,” 2015.

[31]	 L.F. Castro, E. Espitia, and S. Montaño, “Goal Oriented Requirements Engineering
supported by the SEMAT kernel,” CONISOFT 2016, Puebla, Mexico, 2016.

338

1.	 Introduction

At present, both public and private organizations understand and assess the value of
data. Well managed enterprise information has inestimable value for the organizations
and enterprises [1]. Once the data is considered as fundamental asset for organizations,
its strategic value leads to reconsider the importance of maintaining adequate levels of
quality in data that is managed by any kind of enterprise application.

The data are becoming a key asset to improve the efficiency in today’s dynamic and
competitive business environment [2]. The economic and social impact of poor data
quality (DQ) has a significant economic cost for organizations [3]. Although significant
works of research have been done on the notion of data and information quality, their
main focus is on the objective quality attributes of data [4]. The quality of data products
and data warehouse directly determines the quality of the business operations mana-
gement and decision-making through data [5]. Given this strategic value of data in the
execution of business processes, and considering that more frequently organizational
data is published through Web applications, organizations need to ensuring acceptable
levels of quality.

Chapter # 19
QUACOP: An approach to
Increase the Quality
of Artifacts considered in a
Project Planning Process

César Guerra-García,
Rafael Llamas, Omar
Montaño
Department of
Information Technology
Polytechnic University
of SLP
San Luis Potosí, México
{cesar.guerra, rafael.
llamas, omar.montano}@
upslp.edu.mx

Reyes Juárez-Ramírez
School of Chemical
Science and Engineering
Autonomous University
of Baja California
Tijuana, B.C., México
reyesjua@uabc.edu.mx

Victor Menéndez
-Domínguez
Department of
Mathematics
Autonomous University
of Yucatán
Mérida, Yucatán, México
mdoming@uady.m

339CHAPTER # 19 - QUACOP: AN APPROACH TO INCREASE THE QUALITY OF ARTIFACTS CONSIDERED IN A PROJECT PLANNING PROCESS

For many years the data quality has been treated as a set of measurements related to
a specific set of data (e.g. ¿are they complete? ¿are they valid? or at the intersection
of two sets of data ¿are they consistent?). When we discuss about data quality, it is
thought that quality is based on the data stored in the storage repositories (e.g. data-
bases, text files, excel files, etc.). This idea is very biased, as mentioned in Strong et al.
in [6] the concept of “quality goes beyond data stored, it includes the data found in the
processes of production and its use”.

In the last years the research about diverse topics of data quality has been developed
rapidly, becoming a popular field of study, which covers areas like information sys-
tems, knowledge management, artificial intelligence, accounting, statistics and other
disciplines [7]. One of the approaches through which it seeks to improve the quality of
software, is focusing on the study and improvement of the processes that govern the
development of software [8], and it is precisely the core of our research in this case.

Improve software quality involves not only the creation of effective programming lan-
guages, new development methodologies (e.g. agile, XP) and advanced tools (IDE´s,
compilers, debuggers, etc…), and focusing only on the final quality of the software
product. It also includes the procedures used to create, deliver and maintain software.
Fuggeta in [8] gives a definition of Software Process to affirm that “A coherent set of
policies, organizational structures, technologies, procedures and artifacts, which are
necessary to design, develop, deploy and maintain a software product”. The use of
software development processes adjusted to the requirements of a project and of the
work team has strong influence in the final quality of the produced products.

As can be observed into a Software Development Project, there are a lot activities that
are executed, different artifacts are generated and used, many data are interchanged
among different actors and output products are generated. This outline is complex and
is explained by the participation of several processes found within it, as it is shown by
the standard ISO/IEC 12207:2008 [9] into the group of “Project Processes” of the soft-
ware life cycle.

Within software development project, the quality of the artifacts is related to the data
quality and its content, besides also could be evaluated through its structure and me-
tadata. But being careful not to misinterpret the quality of the artifacts with the quality
of the data used in the artifacts, nor with the quality of the data describing artifacts.

One of the problems with which the management of software development projects
is faced is the misuse of resources. And one of its causes is originated by improper

340 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

decisions leading by an inadequate level of the quality of an artifact. This low level
of quality can also be caused by poor presentation and/or description of the artifact
(through its metadata). This is a problem because once we are not able to define cri-
teria of utility of the artifact, this one could be ignored or if it is considered it could
generate errors in some scenarios (e.g. lack of update). The quality models can be
used to evaluate the final product or the different artifacts produced along with the
software development.

In this paper, we focus on studying the data quality corresponding to the metada-
ta associated with the artifacts that describe and provide additional information
(e.g. title, ID, version, update, etc.) on them to managers of software development
projects.

The main goal of this paper is show a Data Quality Model that could be used by Soft-
ware Team Leaders and Project Managers, as a reference to evaluate, and if appro-
priate, to improve the level of quality of the values corresponding to the metadata
that describes the artifacts used in the planning process of a software development
project.

In order to propose this model of data quality, we take into account as reference, the
artifacts used in the “Planning Process”, defined in the international standard ISO/IEC
12207:2008 [9], which can be modified by the development group as deemed for each
project.

The identification of the specific structure of artifacts will be derived according to PM-
BOK (Project Management Body of Knowledge) [10]. Initially, DQ dimensions are taken
from the de facto standard provided by Strong et al. in [11], being the definitions of
some of these dimensions suggested by Pipino et al. in [12].

This proposal will be used because it is more generic than that provided by the in-
ternational standard ISO/IEC 25012 [13], which focuses exclusively on the dimensions
required by the structured data within a computer system.

This work is organized as follow: in section 2 we describe the proposed models by
Strong et al. [6] and Pipino et al. [12], both respected to the data quality dimensions,
besides the international standard ISO/IEC 12207:2008 [9] and the PMBOK [10]. In sec-
tion 3, the artifacts of the Planning Process are identified and the metadata are pro-
posed. Section 4 shows the Data Quality Model applicable to the metadata. Finally, in
section 5 the conclusions are shown.

341CHAPTER # 19 - QUACOP: AN APPROACH TO INCREASE THE QUALITY OF ARTIFACTS CONSIDERED IN A PROJECT PLANNING PROCESS

2.	 Related Areas

2.1	 Models of Data Quality

In order to minimize a negative impact of problems due to low levels of data quality, it is
big paramount that companies can have a quantitative perception of their importance.

The organizations and companies must assess how good their organizational data re-
sources are for the tasks at hand. This is a challenge that still today stay vigent. Organi-
zations have to deal to the data quality issues, both in subjective manner by individuals
that are using the data, as objective manner, with measures based on a set of data.

Moreover, different data quality dimensions have been defined by several authors (from
a different point of view and use) and even they have been defined in the international
standard ISO 25012. This remarks the importance that data quality topic has been gai-
ning in the last two decades, and to perform their definition influences the context in
which it is to be used.

In this proposal as we said before, two data quality models are used as basis; by one
hand, the DQ Model proposed by Strong et al. [6], the authors show four categories and
describe on each one of them some dimensions (see Table 1).

On the other hand, the model of data quality proposed by Pipino et al. [12], Pipino des-
cribes in deep sixteen data quality dimensions, they are showed in Table 2.

Table 1. Data quality model proposed by strong et al. [6]

Category of data quality Dimensions of data quality
Intrinsic Accuracy, Objectivity, Believability, Reputation
Accessibility Accessibility, Access security
Contextual Relevancy, Value-added, Timeliness, Completeness, Amount of data

Representational Interpretability, Ease of understanding, Concise representation,
Consistent representation

Previous to the elaboration of the model, we carried out modifications in the definitions
of some data quality dimensions, in order to adequate them to the context of metadata
of the artifacts. These modifications were focused on the quality of the artifacts, through
the metadata that describes them, besides to propose additional information of each
them (e.g. title, version, updated, etc.).

342 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Table 2. Data quality model proposed by pipino et al. [12]

Dimension Definition

Accessibility Data is available or easily and quickly retrievable.

Appropriate Amount of data Volume of data is appropriate for the task at hand.

Believability Data is regarded as true and credible.

Completeness Data is not missing and is of sufficient breadth and
depth for the task at hand.

Concise representation Data is compactly represented.

Consistent representation Data is presented in the same format.

Ease of manipulation Data is Easy to manipulate and apply to different tasks.

Free-of-error Data is correct and reliable.

Interpretability Data is in appropriate languages, symbols, and units,
and the definitions are clear.

Objectivity Data is unbiased, unprejudiced, and impartial.

Relevancy Data is applicable and helpful for the task at hand.

Reputation Data is highly regarded in terms of its source and
content.

Security Access to data is restricted appropriately to maintain
its security.

Timeliness Data is sufficiently up-to-date for the task at hand.

Understandability Data is easily comprehended.

Value-added Data is beneficial and provides advantages from its use.

Once established the definitions of the data quality dimensions that are going to serve
as a reference, the next step is to revise the approaches about the processes that are
involved in a software project.

2.2	 Software Life Cycle Process according to Standard
ISO/IEC 12207:2008

According to the international standard ISO/IEC 12207:2008 [9], the Software life cycle
contains 43 processes (see Figure 1). Each of these processes uses as input products
different specific artifacts, and generates others as output products. Among all of these,
this chapter is focused on “Project Planning” process, because through it the entire pro-
ject management is planned and started.

343CHAPTER # 19 - QUACOP: AN APPROACH TO INCREASE THE QUALITY OF ARTIFACTS CONSIDERED IN A PROJECT PLANNING PROCESS

Figure 1. Project processes defined by ISO/IEC 12207:2008.

The standard ISO/IEC 12207:2008 established that the process of “Project Planning” has
as purpose: “to produce and communicate effective and workable project plans“.

The Project Planning process determines “the scope of the project and technical activi-
ties, identifies process outputs, project tasks and deliverables, establishes schedules for
project task conduct, including achievement criteria, and required resources to accom-
plish project tasks” [9].

2.3	 Processes Groups according to PMBOK

Another approach where the processes involved in a project are defined is the one with
the Project Management of Body of Knowledge. The project management is the applica-
tion of knowledge, skills, techniques and tools to project activities to meet project requi-
rements [10]. The project management is accomplished through the application of many
processes as: initiating, planning, executing, monitoring, controlling and closing. In this
approach, the artifacts are defined as input and output products.

The PMPBOK is organized in nine knowledge areas and a collection of processes; all
them accepted as best practices in the organizations around the world and becoming in

344 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

a standard de facto in the Project Management discipline [10]. PMBOK defines the pro-
ject as “a temporary effort undertaken to create a product, service or result”; it identifies
44 processes organized in these knowledge areas: project integration, project scope,
project time, project cost, project quality, project human resources, project communica-
tions, project risk and project procurement (see Figura 2).

Each process covers some particular products (both input and output), besides of speci-
fic tools and techniques. These products are similar to the artifacts used in the standard
ISO/IEC 12207:2008.

That said, it is possible to propose equivalence between both standards, with respect to
the artifacts that are utilized in the Planning Process of a Software Development Project.
This step is justified because through the PMBOK could be known both the name of the
artifact as the structure that should be fulfilled. As mention before, in this proposal the
inputs and outputs products defined in the PMBOK are taken as base.

Figure 2. Project management knowledge areas and processes.

345CHAPTER # 19 - QUACOP: AN APPROACH TO INCREASE THE QUALITY OF ARTIFACTS CONSIDERED IN A PROJECT PLANNING PROCESS

3.	 Identification of artifacts of the project
planning process versus pmbok products

The proposal begins with the analysis of the all artifacts that participate in the Project
Planning process, which could be modified with discretion by the development team
members.

Later on, a set of metadata are identified whose main function is, one the one hand, to
describe each artifact; and on the other hand, to define an internal content structure.

With respect to the structure that each artifact should present (it is oriented to its con-
tent), we propose to use as basis the PMBOK structure. This structure could be conside-
red as specific metadata to each artifact and oriented them to its content. Therefore, on
these metadata of content, you can also evaluate and propose a data quality model (this
DQ model is explained in deep in section 4).

Thus, subsequent questions are twofold: first solve ¿what are the artifacts? and later
¿what are the metadata necessary to describe whatever artifact?.

For the identification of the artifacts involved in the Project Planning process, we con-
duct a revision as indicated by standard ISO/IEC 12207:2008, and equivalence was done
as indicated by the PMBOK (respect to the input/output products of the processes in a
project).

As a first result of this analysis the next artifacts were identified (see Table 3 to Table 9).

Table 3. Proposal of equivalence between artifacts ISO/IEC 12207:2008 and the input/output pro-
ducts of PMBOK “project scope statement”

Artifacts by ISO 12207:2008 Project
Planning Process

Input/Output products defined by PMBOK

Name Structure (Metadata of content for
each artifact)

The scope of the work for the project
is defined.
The feasibility of achieving the
goals of the project with available
resources and constraints are
evaluated.
Interfaces between elements in
project, and with other project and
organizational units, are identified.

Project scope
statement.

Project scope.
Scope planning.
Deliverables of project.
The hypothesis of the project.
Thr Project restrictions.
Description of work.

346 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Table 4. Proposal of equivalence between artifacts ISO/IEC 12207:2008 and the input/output pro-
ducts of PMBOK “dictionary of work breakdown structure”

Artifacts by ISO 12207:2008 Project
Planning Process

Input/Output products defined by PMBOK

Name Structure (Metadata of content for each
artifact)

The tasks and resources necessary
to complete the work are sized and
estimated.
The Manager shall establish the
requirements for the project to be
undertaken.
Estimation of effort.
Adequate resources needed to
execute the tasks.
Allocation of tasks.
Assignment of responsibilities.

Dictionary
of Work
Breakdown
Structure
(WBS).

Description of each component in the WBS.
For each component of WBS is included
a brief definition of the scope or work
statement, deliverables, a list of activities and
milestone associated.
Could include:
Responsible organization.
Dates of starting and ending.
Resources required.
Cost estimating.
Contract information.
Requirements of quality.
Technical references to facilitate performance
of the work.

Table 5. Proposal of equivalence between artifacts ISO/IEC 12207:2008 and the input/output pro-
ducts of PMBOK “project management plan”

Artifacts by ISO 12207:2008
Project Planning Process

Input/Output products defined by PMBOK

Name Structure (Metadata of content for each
artifact)

Plans for the execution of
the project are developed.
Plans for the execution of
the project are activated.

Project Management
Plan.

Description how to execute, monitor and
control the project.
Could include:
One or more subsidiary management plans.
Planning documents.
Organizational process assets.
Communications management plan.

Table 6. Proposal of equivalence between artifacts ISO/IEC 12207:2008 and the input/output pro-
ducts of PMBOK “project schedule”

Artifacts by ISO 12207:2008
Project Planning Process

Input/Output products defined by PMBOK

Name Structure (Metadata of content for each
artifact)

Schedules for the timely
completion of tasks. Project Schedule.

Activity definition.
Activity duration estimating.
Activity sequencing.
Dates to achieve the planned schedule
milestones (schedule development).
Activity resource estimating.
Staffing management.

347CHAPTER # 19 - QUACOP: AN APPROACH TO INCREASE THE QUALITY OF ARTIFACTS CONSIDERED IN A PROJECT PLANNING PROCESS

Table 7. Proposal of equivalence between artifacts ISO/IEC 12207:2008 and the input/output pro-
ducts of PMBOK “risk register”

Artifacts by ISO
12207:2008 Project
Planning Process

Input/Output products defined by PMBOK

Name Structure (Metadata of content for each artifact)

Quantification of risks
associated with the
task or the process
itself.

Risk register.

Qualitative risk analysis.
Quantitative risk analysis.
Risk response planning.
Could include:
Risk description.
Category.
Cause.
Ocurrence probability.
Impact in the objectives.
Proposal of responses.
The person in charge.
Actual condition.

Table 8. Proposal of equivalence between artifacts ISO/IEC 12207:2008 and the input/output pro-
ducts of PMBOK “quality management plan”

Artifacts by ISO
12207:2008 Project
Planning Process

Input/Output products defined by PMBOK

Name Structure (Metadata of content for each artifact)

Quality assurance
measures to be
employed throughout
the project.

Quality
management plan.

Description of quality policies of the performing
organization.
Description of the processes of quality planning,
assurance and control quality.
Description of quality metrics.
Description of the quality checklist.
Definition of quality baseline.

Table 9. Proposal of equivalence between artifacts ISO/IEC 12207:2008 and the input/output pro-
ducts of PMBOK “cost management plan”

Artifacts by ISO
12207:2008 Project
Planning Process

Input/Output products defined by PMBOK

Name Structure (Metadata of content for each artifact)

Costs associated with
the process execution.

Cost
management
plan.

Accuracy level of cost estimates.
Including contingency costs.
Measure units (hours, days, weeks, etc.).
Links to the procedures of the organization (with
respect to the accounting of the organization).
Rules for the measuring of performing.
Formats of cost reports and its presentation frequency.
Description of cost processes: estimating, budgeting
and control.
Contract statement of work.

348 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

3.1	 Proposal of Metadata for artifacts

Once analyzed all the artifacts selected, we show a set of metadata proposed (all of
them are presented in Table 10). It is worth to highlight that these metadata are common
to all artifacts identified (being necessary to identify others specific metadata for each
one of artifacts in particular, which could be one of the future work of the research).

Table 10. Set of metadata identified for all artifacts of the project planning process

•• Title of document.
•• ID of the document.
•• Table of contents.
•• Revision history, including:

»» Date.
»» Version number.
»» Description of revision.
»» Author.
»» Reviser.

•• Change request number.
•• Organization or department in charge to elaborate the document.
•• Indicate if the document is “Confidential” and/or the access level to it.
•• Objective of developing the artifact.
•• Glossary.

Once identified the artifacts, the metadata associated and taking as reference the de-
finitions of the data quality dimensions (Table 2), in the next section we show the Data
Quality Model that is applied to the metadata aforementioned.

4.	 Proposal of data quality model applied to
the metadata of the artifacts

The data quality models aforementioned (Table 1 and 2) were considered as a reference
in order to elaborate our proposal.

This data quality model proposed should be applied to all metadata of the artifacts
identified in Table 10. It is worth to highlight that the experience of the authors in many
software development projects were considered, in order to complement and improve
the proposal.

Each one of the metadata will be assessed from the point of view of the next dimensions
shown in Table 11. In order to get a better understanding, a brief description is given for
each dimension.

349CHAPTER # 19 - QUACOP: AN APPROACH TO INCREASE THE QUALITY OF ARTIFACTS CONSIDERED IN A PROJECT PLANNING PROCESS

Table 11. Data quality model suggested to be applied to the metadata of the artifacts in a project
planning process

Dimension Description

Accessibility The metadata “Title” and “Revisions history”, must have a reliable level
and should contain a procedure that ensures its credibility.

Beliavability
The artifacts must have a reliable “Title”.
The “Revisions history” should follow a procedure that ensures its
credibility.

Timeliness
The “Revisions history” should show that is updated and it has been
revised to maintain its effective time. In case that document had been
modified the “Table of contents” should be updated accordingly.

Security
The “Title of document” should be public, however, it is necessary to
indicate which others metadata could be publics or confidential. For
instance, the metadata “Person in charge of the document” could be
public or not, depending of the scenario.

Reputation The procedure to assign the “Revisions history” should ensure a
tracking update that has seen the artifact.

Interpretability
The “Objective of developing the artifact” should be correctly expressed,
by using the adequate language and symbols.
A particular format should be used to assign the “ID of the document”
through the specific language.

Objectivity The “Title of document” and “Objective of Developing the artifact”
should be unbiased, according to the content of the artifact.

Relevancy It is imperative to determine the level of “Confidentiality” as well as the
“Organization or Department in charge of document”.

Understandability The “Glossary” should be easily realized, in order to get a better
understanding of all artifacts.

Consistent
representation

Each element into “Revisions history” has to show the same
presentation format.

Completeness
The “Objective of developing the artifact” must be completed, in order
to clearly describe the objective. The “Table of contents” should be
complete, thus assuring that the document contains all the information.
The “ID of document” always must be complete.

Accuracy
Both the “Title of document” as “Version number” should be accurate.
The “Revisions history” should be precise avoiding data show more.
The “ID of document” should be accurate.

Free of error The “Title of the document” and “Table of contents” should be shown
without any kind of error.

5.	 Conclusions

During last two decades, the variety and complexity of software projects has grown dra-
matically, satisfying any kind of business processes into the companies. The software in
general and particular Web applications are as important as organization itself.

350 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

This paper shows a particular data quality model applied to a set of metadata that des-
cribe the artifacts used in a project planning process. This data quality model focuses on
the quality of the artifacts through their metadata that describe them, rather than the
quality of the data used in the content of the artifacts.

The strength and advantage of this data quality model is based once that it is correctly
applied in a software development project, the artifacts are become in active elements,
reference and support to the management of the project managers.

Likewise, can be observed that artifacts defined in the international standard ISO
12207:2008 are also defined into the PMBOK, so we can affirm that both standards can
complement.

Until our knowledge, there is not other proposal related to this topic, except the propo-
sal presented in [14], being this work a new extended and improved version.

As future work, we will continue with the analysis of the rest of processes defined in the
standard ISO/IEC 12207:2008, trying to identify their artifacts and comparing them with
those defined in PMBOK; likewise, identifying metadata by each artifact. The above as a
preamble to define metrics, and later on to evaluate software projects based on these.

6.	 References

[1] 	 George, E. and J. Gao. A quality study exploring users´ perception of information
management challenges in the cloud. in International Conference on Information
Quality, ICIQ 2014. 2014. Xian, China.

[2] 	 Oliveira, P., F.t. Rodrigues, and P. Henriques. A formal Definition of Data Quality Pro-
blems. in Tenth International Conference on Information Quality (ICIQ’05). 2005. MIT,
Cambridge, MA, USA.

[3] 	 Eppler, M. and M. Helfert. A Classification and Analysis of Data Quality Costs. in In-
ternational Conference on Information Quality. 2004. MIT, Cambridge, MA, USA.

[4] 	 Eshraghian, F. and S.A. Harwood. Information product: How information consumers’
perception of ̀ fitness for use´ can be affected. in International Conference on Infor-
mation Quality, ICIQ 2015. 2015.

[5] 	 Liu, Q., G. Feng, and N. Wang. Managing data quality for information systems com-
bination from different data sources in International Conference on Information
Quality, ICIQ 2014. 2014. Xian, China.

[6] 	 Strong, D.M., Y.W. Lee, and R.Y. Wang, Data Quality in Context. Communications of the
ACM, 1997. 40(5): p. 103-110.

351CHAPTER # 19 - QUACOP: AN APPROACH TO INCREASE THE QUALITY OF ARTIFACTS CONSIDERED IN A PROJECT PLANNING PROCESS

[7] 	 Bai, X., M. Nunez, and J.R. Kalagnanam, Managing data quality risk in accounting in-
formation systems. Information Systems Research, 2012. 23: p. 453-473.

[8] 	 Fuggeta, A. Software Process: A Road Map. in Twenty-Second International Confe-
rence on Software Engineering (ICSE’2000). 2000. Limerick, Ireland: ACM Press.

[9] 	 ISO/IEC, ISO/IEC 12207. International Standard. Software Life Cycle Processes., 1995,
International Standard Organziation/International Electrotechnical Committee:
Geneve.

[10] 	PMI, A Guide to the Project Management Body of Knowledge, 2000 edition. Project
Management Institute Communications, United States, 2000.

[11] 	 Strong, D., Y. Lee, and R. Wang, Ten Potholes in the Road to Information Quality. IEEE
Computer, 1997: p. 38-46.

[12] 	 Pipino, L., Y. Lee, and R. Wang, Data Quality Assessment. Communications of the
ACM, 2002. 45(4): p. 211-218.

[13] 	 ISO-25012, ISO/IEC 25012: Software Engineering-Software Product Quality Require-
ments and Evaluation (SQuaRE)-Data Quality Model, 2008.

[14] 	 Guerra-García, C., et al., Improving the Project Planning Process Considering Arti-
facts with Quality, in 4th. International Conference on Software Engineering Re-
search and Innovation, IEEE, Editor 2016, IEEE: Puebla, Pue. p. 15-20.

352

Chapter # 20
New relationships
of the Risk alpha with
the Semat Essence kernel

Carlos Mario Zapata Jaramillo & Antony de Jesús Henao Roqueme
Departamento de Ciencias de la Computación y de la Decisión
Universidad Nacional de Colombia—Sede Medellín
Medellín, Colombia
cmzapata@unal.edu.co , ajhenaor@unal.edu.co

1.	 Introduction

The lack of a common ground for comparing software engineering methods and prac-
tices makes difficult the organizational selection of the appropriate set of practices for
guiding the work. As a result, a framework for supplying the lack of a common ground
is needed [1].

Semat (Software Engineering Method and Theory) is a proposal intended to supply the
need for a common ground in the software engineering discipline. As a result, Semat
defines a theory composed of universal elements covering all software engineering en-
deavors [2].

Alphas are part of the universal elements defined by Semat and they represent “the
things we always work with.” Alphas are the most important dimensions we have to care
about in a software engineering endeavor. Semat allows for assessing health and pro-
gress of a software engineering endeavor via alpha states. An alpha state is defined by
using a checklist with the criteria the team should fulfill for achieving such state. We can
review how a software engineering endeavor is advancing by recognizing the state an
alpha has. Hence, alpha states lead to the Essence kernel actionability [1].

Essence kernel excludes risk as an alpha. However, according to Jacobson et al. [3] the risk
alpha was neglected as an alpha for the Essence kernel, since they consider checklists
in the Essence kernel already address risks threatening software engineering endeavors.

353CHAPTER # 20 - NEW RELATIONSHIPS OF THE RISK ALPHA WITH THE SEMAT ESSENCE KERNEL

According to Zapata and Henao [4], excluding the risk alpha from the Essence kernel
jeopardizes the actionable feature of the Essence kernel. Also, checklists in the Es-
sence kernel addressing risks left unguided the things have to be done for achieving
some alpha states, which runs counter to checklist definition.

Similar to the Zapata and Henao [4] statement, Santiago and Morales [5] promote a
risk alpha to be included in the Essence kernel, since such a kernel only addresses
risks when they occur. The inclusion of the risk alpha into the Essence kernel allows
software engineering teams for monitoring and controlling risks before they occur.

In order to address Essence kernel problems related to the risk alpha exclusion, Za-
pata and Henao [4] and Santiago and Morales [5] have defined a proposal for the risk
alpha. Zapata and Henao work consider some relationships between the risk alpha
and the Essence kernel alphas. However, the introduction of the risk alpha into the
Essence kernel requires additional relationship definitions among the Essence ker-
nel elements—e.g., a new activity space providing support to perform activities for
progressing the risk alpha and the completion criteria for such activity space. Conse-
quently, in this chapter, we define a set of relationships between the risk alpha and
the Essence kernel elements. Likewise, we explore additional relationships between
the risk alpha and the Essence kernel alphas.

We expect new relationships defined in this Chapter allows for introducing the risk
alpha into the Essence kernel. Therefore, teams can track and assess progress and
health of software engineering endeavor risks. Semat Essence kernel allows software
engineering teams for monitoring and controlling risks by tracking software enginee-
ring endeavor risks. Also, contingency actions for preventing potential risks can be
defined and tracked [6].

This Chapter is organized as follows: in Section II we present the theoretical framework
of the proposal; in Section III we present some background about the risk alpha and
the problems surrounding its definition; in Section IV we propose a solution to the
identified problems; finally, in Section V we discuss conclusions and future work.

2.	 Theoretical framework

Semat is intended to address the lack of a common ground of the software engi-
neering by defining a theory composed of universal elements covering all software
engineering endeavors [1]. Such a theory is composed of an Essence kernel and a
language [2].

354 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Essence kernel is categorized in three areas of concern: Customer, Solution, and Endea-
vor. Such areas represent a way to gather together the universal elements in the Essence
kernel [2]. Such universal elements are defined as follows:

•• Alphas represent “the things we always work with.” They are the most important dimen-
sions we have to care about in a software engineering endeavor [2].

•• Activity spaces represent “the things we always do” in a software engineering endeavor.
They provide support to perform activities for progressing the Essence kernel alphas [2].

•• Competencies are the skills required for performing software engineering activities [2].

Essence kernel alphas and their relationships are presented in Figure. 1. Also, Essence
kernel activity spaces are presented in Figure 2.

Alphas are composed of states. Such states provide checklists with the criteria the team
should fulfill for achieving them. Checklists provide guidance in the things to be done
for progressing an alpha [2].

Activity spaces define completion criteria. They establish when an activity space is com-
pleted and they can be expressed in terms of alpha states [2].

We can review how a software engineering endeavor is advancing by recognizing the sta-
te an alpha has. Hence, alpha states lead to the Essence kernel actionability [1].

Figure 1. Essence kernel alphas. Source: [2].

355CHAPTER # 20 - NEW RELATIONSHIPS OF THE RISK ALPHA WITH THE SEMAT ESSENCE KERNEL

Figure 2. Essence kernel activity spaces. Source: [6].

3.	 Background

In this Section, we identify some problems related to the exclusion of the risk alpha
from the Essence kernel. Also, we present Zapata and Henao [4] proposal for solving
such problems.

According to Jacobson et al. [3] the risk alpha was neglected as an alpha of the Essence
kernel, since they consider checklists in the Essence kernel already address risks threa-
ting software engineering endeavors. They say “ if you are having trouble achieving the
Requirements Alpha Coherent state because there are conflicting requirements that you
are having trouble solving, then this is an indication you may have a requirements risk”
[3].

Zapata and Henao [4] recognize the fact Essence kernel helps to identify what dimension
of a software engineering endeavor is suffering the impact of risks. However, they state
the way risks are managed in the Essence kernel omit the Essence kernel actionable
feature, since the possibility of tracking the progress of those risks in an explicit way is
left unguided.

Jacobson et al. [3] statement supports Santiago and Morales [5] position about the Es-
sence kernel when they say risks are only addressed when they occur. According to Keil
et al. [7], such situation could lead development teams to failure when they are running
a software engineering endeavor. They state the high failure rate of software engineering
endeavors is related to the lack of risk management.

356 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Zapata and Henao [4] identify some problems with alpha state checklist items where
risks are addressed in the Essence Kernel. Such checklists are presented in Table 1.

Table 1. Alpha state checklist items addressing risks [2,4].

Alpha State Checklist item
Opportunity Viable “Risks are manageable”
Software System Architecture selected “Architecture selected that address key technical risks”
Work Prepared “Resource availability and risk exposure understood”
Work Under control “Work going well, risks being managed”

Some checklist items are supposed to address risks in the Essence kernel but they fail,
since some of them use adjectives for qualifying risks—e.g., Opportunity viable state says
“risks are manageable” [2]. Such qualification could lead to some misunderstanding, sin-
ce the criteria for determining when a risk is manageable are excluded from the Essence
kernel [4]. Zapata and Henao [4] state such qualification left unguided the things have
to be done for achieving some alpha states, which runs counter to checklist definition.

In order to address problems described above Zapata and Henao [4] and Santiago and
Morales [5] have defined a proposal for the risk alpha. Zapata and Henao [4] proposal is
presented in Figure 3 and Figure 4.

Zapata and Henao [4] define five states of the risk alpha. The first state is “uncertain,” for
representing the starting point of a software engineering endeavor. At that moment, the
risks threaten the software engineering endeavor but the team is unaware of the impact
they will have and the likelihood of their occurrence. This situation should lead teams
to understand the need for a management plan. So, they can progress in the risk alpha.

The second state of the risk alpha is “ identified,” allowing teams for identifying the risks
threatening the software engineering endeavor and assessing whether is worthy or not
the running of the software engineering endeavor [4]. Usually, at the beginning of a soft-
ware engineering endeavor risks arise—e.g., unclear scope, unrealistic schedules and
budgets, inadequate skills, and so on [8]—so they should be identified. By identifying
those risks, the team should be able to establish a set of resources and work products
to be used for performing the risk management. Identification process ends by making
available a risk management plan [4].

The third state of the risk alpha is “understood,” leading teams to perform both quali-
tative and quantitative analysis of the risks. By performing such analyses, the team can
assess the impact of the risks and the likelihood of their occurrence [9]. The Output of

357CHAPTER # 20 - NEW RELATIONSHIPS OF THE RISK ALPHA WITH THE SEMAT ESSENCE KERNEL

those processes allows stakeholders and team for understanding risk exposure and com-
mitting to address risk management throughout the software engineering endeavor [4].

Fourth state of the risk alpha is “planned,” allowing teams for planning actions in order
to enhance opportunities and reduce threats, defining contingency actions by establis-
hing how the team should act when a risk is materialized, defining actions by establis-
hing how risks should be monitored and controlled, and establishing a budget for per-
forming contingency actions [9].

Finally, the fifth state of the risk alpha is “under control,” for performing control and
monitoring of risks—e.g., assessing whether contingency actions have reduced risks to
acceptable levels—and waiting for new risks to arise [4, 9].

Alpha relationships proposed by Zapata and Henao [4] in Figure 4 ignore some rela-
tionships existing between the risk alpha and the Essence kernel alphas—e.g., risk alpha
“understood” state is related to the commitment stakeholders and the team has for ad-
dressing risks. However, such relationship is excluded from the risk alpha relationships.
Consequently, new risk alpha relationships need to be included for facilitating risk alpha
inclusion in the Essence kernel.

Essence kernel activity spaces support activities for progressing in Essence kernel alphas.
However, since the risk alpha is outside the Essence kernel, no activity spaces are defined
for supporting activities that progress this alpha. Consequently, existing activity spaces need
to be modified in order to include risk alpha and new activity spaces need to be defined.

Figure 3. Zapata and Henao proposal for risk alpha relationships. Source: [4].

358 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Figure 4. Zapata and Henao proposal for risk alpha. Source: [4].

4.	 Solution

In this Section, we define some relationships between risk alpha and other Essence
kernel alphas. Likewise, we define some relationships between the risk alpha and the
Essence kernel activity spaces. Such relationships lead us to define a new activity space
providing support for performing activities that progress the risk alpha.

We define two new alpha relationships related to risk alpha and modify one relationship
proposed by Zapata and Henao [4]. Such relationships are presented in Table 2.

In a software engineering endeavor, stakeholders and team commit to address risk.
However, the role played by stakeholders and team is different. The team manage the
risks could threaten the software engineering endeavor. Such management process in-

359CHAPTER # 20 - NEW RELATIONSHIPS OF THE RISK ALPHA WITH THE SEMAT ESSENCE KERNEL

volves risk identification, management plan creation, quantitative and qualitative risk
analysis execution, and so on. Stakeholders support the team throughout the manage-
ment process. They provide the budget needed for performing risk management. Also,
the decision making process about the risks of the software engineering endeavor is
totally up to them.

We define the alpha relationship “Stakeholders commit to address Risk,” since Zapata
and Henao proposal [4] consider the relationship between team and risk but excludes
the relationship between stakeholders and risk. This relationship represents the deci-
sion making the process to continue with the software engineering endeavor once risks
are identified. Such a process should be based on risk analysis performed by the team.
Usually, this decision ends with the transition of risk alpha from the “ identified” state to
the “understood” state.

As we have mentioned before, the beginning of a software engineering endeavor is
threatened by risks, but the team is unaware about the impact they will have and the
likelihood of their occurrence [4]. Risks will remain in such state—“uncertain”—un-
til some work is performed for identifying, managing, and controlling risks. So, teams
should perform work to address software engineering endeavor risks. We represent this
responsibility in the “helps to address” relationship between work and risk.

Semat defines an opportunity as the reason for running the software engineering en-
deavor. No software engineering endeavor is possible without an opportunity [2]. Accor-
dingly, risks threatening the software engineering endeavor are threatening the oppor-
tunity too. So, the relationship between such alphas should be consistent. As a result, we
consider the “produces” relationship between risk and opportunity proposed by Zapata
and Henao [4] should be renamed as “threatens.” Alpha relationships described in Table
II are graphically presented in Figure 5.

Table 2. Risk alpha relationships

Alpha Alpha Relation
Stakeholders Risk Commit to address
Work Risk Helps to address
Risk Opportunity Threatens

Despite some Essence kernel activity spaces provide support for activities progressing
some risk alpha states, we lack an activity space for providing support to activities rela-
ted to the software engineering risks identification, risk analysis, and risk understanding
in the Essence kernel. Consequently, we define a new activity space for supplying such

360 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

a need. The activity space defined is presented in Figure 6. “Understand risks” activity
space provides support to all of the activities performed by the teams in order to un-
derstand software engineering endeavor risk exposure, understand risks for achieving
an unbiased risk analysis, and commit to address risks throughout of the software en-
gineering endeavor.

Figure 5. Zapata and Henao proposal for risk alpha relationships. Source: [4].

Figure 6. Understand risks activity space in Essence kernel. Adapted from: [4].

361CHAPTER # 20 - NEW RELATIONSHIPS OF THE RISK ALPHA WITH THE SEMAT ESSENCE KERNEL

We modify the completion criteria of some Essence kernel activity spaces with clauses
related to the risk alpha states for evidencing progress in the risk alpha. Such modifica-
tions are presented in Table 3. Also, completion criteria for the “understand risks” activity
space is presented in Table 3.

Table 3. Activity space modifications

Activity space Completion criteria Added clause

Prepare to do the work Team: Seeded, Way of Working: Foundation
Established, Work: Prepared Risk: Uncertain

Understand risks Risk: Understood
Coordinate activity Team: Formed, Work: Under Control Risk: Planned

Track progress Team: Performing, Way of Working: Working
Well, Work: Concluded Risk: Under control

5.	 Conclusions and Future Work

In this chapter, we exposed problems generated by the risk alpha exclusion from the
Essence kernel and we propose some solutions to such problems.

First, we considered Zapata and Henao [4] proposal as starting point for the risk alpha.
Then, we identified some ignored relationships between such proposal and other Essen-
ce kernel elements. Next, we defined three new alpha relationships, added new comple-
tion criterion clauses to some Essence kernel activity spaces and defined a new activity
space. Finally, we allow teams for tracking and assessing the progress and health of
software engineering endeavor risk by implementing such improvement to the Zapata
and Henao [4] proposal. Hence, contingency actions for preventing potential risks can
be defined and tracked [6].

As future work, we propose the exploration of other dimensions may affect the Semat
Essence kernel actionable feature, since we only focused in the risk alpha. Also, Santiago
and Morales [5] work should be explored and analyzed, since they pointed out several
dimensions could affect the Essence kernel actionable feature. Finally, some relation-
ships among such dimensions and other Essence kernel elements should be explored.

6.	 References

[1] 	 I. Jacobson, P. Ng, P. McMahon, I. Spence, S. Lidman, “The Essence of Software En-
gineering. Applying the SEMAT Kernel,” Indiana, United States of America: Addison-
Wesley Professional, 2013.

362 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

[2] 	 Kernel and Language for Software Engineering Methods (Essence) version 1.1, OMG
Std, 2015. http://www.omg.org/spec/Essence/.

[3] 	 I, Jacobson, P. McMahon, R. Racko, “24 Questions. Semat am Essence: They
Why’s, What’s and How’s to See the Difference,” Ivar Jacobson Internatio-
nal, November 2015. [Online]. https://www.ivarjacobson.com/publications/
white-papers/24-questions-semat-essence.

[4] 	 C. Zapata, A. Henao, “Alfa Riesgo: Un elemento universal presente en todos los es-
fuerzos de ingeniería de software,” Proc. Spanish edition. 4th International Confe-
rence on Software Engineering Research and Innovation (CONISOFT2016), Abril 2016,
pp. 36-40.

[5] 	 B. Santiago, M. Morales, “ALPHAs basadas en el PMBOK: los elementos esenciales de
un proyecto de software,” Proc. Spanish edition. 4th International Conference on Soft-
ware Engineering Research and Innovation (CONISOFT2016), Abril 2016, pp. 29-35.

[6] 	 A. Nehari, R. Mat-Zin, M. Houari, “Risk Management and Information Technology
Projects,” International Journal of Digital Information and Wireless Communica-
tions, vol 4, no 1, pp. 1-9, 2014.

[7] 	 M. Keil, P. Cule, K. Lyytinen, R. Schmidt, “A framework for identifying software project
risks,” Communications of the ACM, vol 4, Issue 11, pp. 76-83, 1998.

[8] 	 T. Addison, S. Vallabh, “Controlling Software Project Risks—an Empirical Study of
Methods used by Experienced Project Managers,” Proc. Annual Research conference
of the South African institute of computer scientists and information technologists
on Enablmenet through techonology (SAICSIT’02), South Africa, 2002, pp. 128-140.

[9] 	 PMI, A guide to the Project Management Body of Knowledge (PMBOK Guide), 2000
ed., Newtown Square, PA, United States of America: Project Management Institute,
Inc., 2000.

PART 3
TEACHING

364

Chapter # 21
Towards a Compilation
of Problems in the Adoption
of Agile-Scrum Methodologies:
A Systematic Literature Review

Janeth López-Martínez, Reyes Juárez-
Ramírez, Carlos Huertas, Samantha Jiménez
School of Chemical Science and Engineering
Autonomous University of Baja California
Tijuana, Baja California, México
{patricia.lopezm, reyesjua, chuertas,
samantha.jimenez}@uabc.edu.mx

Cesar Guerra-García
Polytechnic University of San Luis Potosi
cesar.guerra@upslp.edu.mx

1.	 Introduction

Agile Software development is a new approach, which is gaining industry’s attention in
recent years. Most organizations are moving to the adoption of agile methodologies.
Consequently, this tendency is due the continuous necessity of producing best solu-
tions, fast development, and profitable software. Agile methods assume that changes
in requirements are inevitable, and thus the software development cycle has to adapt
to this fact. Moreover, software teams have to deliver value product to the customer as
quickly as possible with fewer concerns on extensive planning and documentation [1].

Agile methodologies have been especially useful in projects with the especial charac-
teristics [2]: small teams, short development calendars, constantly change in require-
ments, systems based on new technologies.

Successful agile adoption helps to produce higher quality software at a lower cost and
enhances developer’s moral than for example the traditional waterfall model approach.

Although most agile methodologies have been seen as a light process and easy to un-
derstand, but the adoption of this methodologies sometimes is very difficult. This is due
that they are not obvious themselves, so it is hard to introduce agile methodologies in
the culture of a company where people have a certain way of working during a long time.

365CHAPTER # 21 - TOWARDS A COMPILATION OF PROBLEMS IN THE ADOPTION OF AGILE-SCRUM METHODOLOGIES: A SYSTEMATIC LITERATURE REVIEW

Agile adoption always comes with special challenges and fundamental organizational
changes that are necessary for successful outcome [1].

We found in literature many agile studies that were conducted to assess the merits and cha-
llenges of agile adoption. Some of the main issues reported are listed below [37, 38, 39, 40]:

•• Team members reveal limited knowledge of agile method during the implementa-
tion phase.

•• At the beginning of adoption, organization learning of the enterprise is not aligned
with agile process adoption.

•• At the beginning of adoption, requirements present different levels of abstraction,
which derives in ambiguity dealing with conflicts in product quality.

•• Developer fear caused by the transparency of skill deficiencies.

•• The necessity for developers to be a “master of all trades” in order to get the de-
sired product.

•• Increased reliance on social skills.

•• A lack of business knowledge among developers.

•• The necessity to understand and learn values and principles of agile, not just the
practices.

•• Lack of developer’s motivation to use agile methods.

•• Implications of devolved decision-making.

•• The necessity for agile compliant performance evaluation.

•• The lack of Agile-specific recruitment policies and suitably trained information te-
chnologies graduates.

•• The necessity of integrating each pilot project with the project environment’s exis-
ting processes.

•• The necessity of adding support for cross-team communication, especially in large
teams that might be located in different geographical locations.

•• Although Agile values code production is more than plan-driven processes, some
developers tend to spend more time creating non-code artifacts and counting the
number of meetings they attend than producing code.

366 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

•• Developers, who view agile as micromanagement, perceive project management as
being about due dates and missed deadlines.

•• When an overzealous team moves quickly to Agile without careful planning, it usua-
lly results in a number of problems.

•• Agile does not have separate coding and testing phases. Code written during itera-
tion should be tested and debugged during the iteration.

Problems reported in each case study concern different aspects around the elements
involved in the development process. We do not find a clear pattern of the problems pre-
sented in each case study. In order to integrate a guide for agile adoption, we propose
a classification of those problems in the next four groups: people, process, project and
company (organization).

In this chapter, we present a Systematic Literature Review (SLR) performed to identi-
fy a pattern of problems presented during agile methodologies adoption. In this way,
we could correlate best practices extracted from another well-proved methodologies
and process models such as CMMI, MoProSoft among others, to find solutions for agile
problems.

This chapter is organized as follows. Section II gives a brief description of agile methodo-
logies, emphasizing Scrum. Section III summarizes related work. Section IV describes the
method used for the systematic literature review. Section V exposes the results of the
SLR. In Section VI the problems in the Project category are described in detail. Section
VII presents the conclusions and future work.

2.	 Fundamentals of Agile Methodologies

Software development methodologies have been the main focus of life cycle approa-
ches to any project. Since 1940, there have been significant changes in software develo-
pment paradigm, having approaches such as structured programming, object-oriented
programming, and more recently extreme programming and aspect-oriented program-
ming. Each evolutionary change introduces new ways of thinking and of analyzing pro-
blems, besides; it introduces strengths to the software development. In order to use
these methodologies efficiently, it is important to follow defined process as they are
formulated [3].

Agile methods have been developed as an effort to improve perceived and real weak-
nesses of the conventional Software Engineering. After decades of being utilized, agile

367CHAPTER # 21 - TOWARDS A COMPILATION OF PROBLEMS IN THE ADOPTION OF AGILE-SCRUM METHODOLOGIES: A SYSTEMATIC LITERATURE REVIEW

methodologies provide important benefits to projects. However, the methods are not
applicable to all projects, products, people and situations [4]. In an industry context,
introducing agile methodologies enable considerable changes in people’s work habits;
this is due these methodologies establish intentionally an opposite side with respect to
the traditional software development approaches [5].

Many agile methodologies have been proposed, and they are still used in the software
development industry; some examples are Extreme Programming, Adaptive Software De-
velopment (ASD), Scrum, Cristal, and others. However, our principal interest is in the
Scrum adoption that is the most used nowadays.

2.1	 SCRUM

According to recent studies [13], many companies have improved the quality of their
products by applying Scrum practices; hence it is considered the most popular agile
methodology. Scrum is basically an iterative, incremental and empirical process to ma-
nage and control the development of a project.

In Scrum, the customer is allowed to make changes to requirements at any time between
sprints, this feature arises some challenges as issues cannot be predicted or is very diffi-
cult to tackle them in a planned way. Given this issue, Scrum methodology accepts that
this problem cannot be completely solved or understood, therefore it focus on impro-
ving the team ability to deliver quick and useful responses [7].

Scrum is composed by three main roles: Scrum Team, Scrum Master and Product Ow-
ner. The Scrum Team, which must be self-organized and are responsible for the product
development and the task time estimations for each team member for every sprint.
Usually a sprint has a 2 to 4 week duration and it starts with a meeting so the product
owner and team can understand what is going to be done in the following sprint [6] [8]
[9]. The Scrum Master is the team mentor, and main responsible for the process, he/she
is required to teach each member if required and help to solve issues that might arise
during the project. The Product Owner represents the customer, and the generation of
the backlog is the main activity, which basically represents a list of requirements that
are sorted given their priority.

The duration of every Sprint is from 2 to 4 weeks and is the main activity of Scrum. Each
Sprint starts with the planning meeting of the Sprint. The Product Owner and Teamwork
get together to know what will do for the next Sprint [6] [8] [9]. The Figure 1 shows the
main elements for the Scrum process.

368 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Figure 1. Scrum process, a light view.

Currently, it has been found that companies that implement Scrum can be benefited with
increased profitability, communication, teamwork, among others. However, it is usually
hard to adopt an agile methodology because it requires lots of commitment from the
team and this is not always easy. For this reason, we carried out a systematic literature
review to identify which are the most common problems that arise during Scrum adop-
tion. The methodology used for this review is detailed below.

3.	 Related Work

In the software engineering research literature, a number of researchers have worked
on studying the adoption of agile methodologies and their implementation, such as M.
Dalhem et al. [11], I. Inayat et al. [58], A. Kanane [59], E. Cardoso et al. [60], M. Kaisti [61]
and T. Dingsøyr et al. [62].

I. Inayat et al. [58] present a systematic literature review on practices and challenges of
Agile Requirements Engineering (ARE). Their purpose is to learn how traditional Requi-
rements Engineering issues are resolved using agile methods. There 17 ARE practices
are described that they found to be adopted in agile software development. For each
practice, identify its potential respective challenges, also found that while Agile Requi-
rements Engineering practices help counter the challenges experienced in traditional
Requirements Engineering. On the other hand, they also introduce several limitations
for achieving an adequate balance between agility and stability and ensuring sufficient
competence of cross-functional development teams.

369CHAPTER # 21 - TOWARDS A COMPILATION OF PROBLEMS IN THE ADOPTION OF AGILE-SCRUM METHODOLOGIES: A SYSTEMATIC LITERATURE REVIEW

The challenges that ARE imposes to project organization include minimal documen-
tation, budget and schedule estimation, inappropriate architecture, neglect of non-
functional requirements, waste management, customer unavailability and contractual
issues.

E. Cardoso et al. in [60] describe a systematic literature review, which aims to find scien-
tific evidence of the correlation between the use of Scrum and productivity in software
projects. Moreover, they found other aspects that could be affected by the implementa-
tion of Scrum, such as product quality, client satisfaction, cost reduction and team mo-
tivation, which are not necessarily related to productivity but represent general success
characteristics in software development projects.

A. Kanane [59] performed an investigation about the challenges related to the adop-
tion of Scrum. This study was conducted over the case of a company operating in the
financial IT sector and that has been using Scrum for 5 years. The survey focuses on the
challenges related to the transition governance while adopting Scrum, investigating the
challenges connected to the execution of the process, the work routines, and tools and
techniques used to develop IT based projects with the Scrum method. The results were
structured around three categories of challenges: challenges in relation with the prere-
quisites for executing the work, with the sprint management, and with the team dynamic.

The main result of this study shows that adopting Scrum is an ongoing process that ne-
ver ends. Moreover, there are no standards or guidelines discussing how to adopt Scrum
successfully.

M. Dalhem et al. [11] conducted a mapping study trying to understand which agile prac-
tices are the most used in the industry under different circumstances, such as diffe-
rent project types, domains, or processes. The results of this study show that there are
practices that are used more often and that the domain and the process influence the
application of different practices.

The following is a list of universal agile practices:

1.	 Quality check

2.	 Refactoring

3.	 Customer involvement

4.	 Unattached communicative teams

370 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

5.	 Validation practice

6.	 Learning loop

7.	 Outcome review

8.	 Planning meeting

9.	 Time boxing

10.	 Common knowledge

11.	 Progress monitoring

12.	 Product vision

13.	 Evolving and hierarchical specification

14.	 Continuous integration/deployment

15.	 Delivering frequent releases

16.	 Small cross-functional teams

17.	 Daily discussion

18.	 Continuous specification analysis

T. Dingsøyr et al. in [62] examined publications and citations to illustrate how the re-
search on agile has progressed in the 10 years following the articulation of the agile
manifesto. They summarized prior research and introduce contributions on agile soft-
ware development. The number of special issues devoted to agile development is also
an indication of the intense interest displayed in software engineering and other related
fields, notably information systems.

 M. Kaisti in [61] conducted a literature review and a mapping study to bring forth what
is known about agile methods in embedded systems development and to find out if
agile practices are suitable in this domain and what evidence is there to support the
findings. There was found that there are embedded domain-specific problems about
agile methods that need to be solved before agile methods can be successfully applied
to the embedded domain.

As we can see, some systematic literature reviews have been done resulting in the iden-
tification of specific problems, but not necessarily advising a classification of them. Our
present work aims to give a classification of the main problems presented when adop-
ting or implementing agile methodologies, especially Scrum.

371CHAPTER # 21 - TOWARDS A COMPILATION OF PROBLEMS IN THE ADOPTION OF AGILE-SCRUM METHODOLOGIES: A SYSTEMATIC LITERATURE REVIEW

4.	 Methodology for slr

Our SLR was guided by Kitchenham methodology [10]. The next sub-sections describe
the method.

4.1	 Formulating research questions

This study had the objective of identified problems in adopting agile methodologies
such as Scrum. To conduct this study, we establish the following research questions (RQ):

RQ1: What are the main problems for adopting agile methodologies?

RQ2: What are the main problems for adopting Scrum?

The first question emphasize on identify problems for adopting agile methodologies in
general. The second question focuses on Scrum methodology, particularly on problems
for adopting this process.

4.2	 Search strategy

We considered the following scientific electronic libraries: IEEE Xplore, Science Direct,
ACM DL, and Springer Link.

We search publications from 2012 to 2016, trying for specialized journals and conferences.

We used a search string composed by keywords and logic connectors, dealing with the
following search string:

(Agile Methodology OR Scrum) and (Adoption Problems OR Adoption Issues OR Adoption
Challenges)

We searched in all electronic data bases the mentioned search string in three parts of a
document: keywords, abstract, full text (body of the paper).

We used the following search strategy to recognize the most significant papers for this SLR:

•• Selecting the keyword for research

•• Looking in the digital library, trying with research keywords based on inclusion and
exclusion criteria.

372 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

•• Examining each paper through title and abstract.
•• Downloading papers which cover search criteria.
•• Screening each paper, taking a fast view of the sections in a paper.

4.3	 Defining inclusion and exclusion criteria

As we mentioned earlier we selected papers must be published between January 2012
and July 2016. We took into account English and Spanish papers. In some cases, we found
short and full versions of papers, but only full versions were reviewed. We included pa-
pers with a practical approach, in other words, we excluded theoretical papers.

5.	 Results from the review

In Table 1 we are showing the activities realized for our search. We searched for keywords
“Adoption, Adoption Problems, Scrum, Agile Methodologies, and Challenges”, Using tho-
se keywords we found 281 papers related to our research in the most popular scientific
research libraries. These papers were reviewed at the first step to the level of “Title”, re-
ducing the amount to 119. Second step was to review the “Abstract”, reducing the amount
to 93. Finally, taking a look at the general view of the full papers, reducing them to 36,
which are the most relevant for our research.

Tabla 1. Selected papers

Database Original search Title Abstract Fast view Selected
IEEE Xplore 39 33 27 20 18
Science Direct 79 42 28 14 7
ACM DL 111 21 18 5 5
Springer Link 52 23 20 17 6
Total 281 119 93 56 36

In Table 2 we are showing the 36 papers selected for our research. The table details the
data of each paper as ID of the paper, the name of paper, author’s names, the electronic
library where it was obtained and publication’s year.

Table 2. SELECTED PAPERS

Title Author Database Year
Agile Practice in Practice: A Mapping Study [11] M. Dahlem ACM 2014
Agile Methods, Organizational Culture and Agility:
Some Insights [12]

Lakshminarayana
Kompeya ACM 2014

This table continues on the following page ––––––>

373CHAPTER # 21 - TOWARDS A COMPILATION OF PROBLEMS IN THE ADOPTION OF AGILE-SCRUM METHODOLOGIES: A SYSTEMATIC LITERATURE REVIEW

Title Author Database Year
How to Make Agile UX Work More Efficient:
Management and Sale Perspectives [13]

Kati Kuusinen / Kaisa
VaananenVainio Mattila ACM 2012

Adopting Agile Software Development: Issues and
Challenges [1]

Hassan Hajjdiab and Al
Shaima Taleb ACM 2011

Agile Beyond Software Development [14] Dan X. Houston ACM 2014
A multi-faceted Roadmap of Requirements
Traceability Types Adoption in SCRUM: An
Empirical Study [15]

Ghada Alaa / Zeinab
Samir IEEE 2014

Influences on Agile Practice Tailoring in Enterprise
Software Development [16] Julian M. Bass IEEE 2012

Scrum Anti-patterns – An Empirical Study [17] Veli-Pekka Eloranta, et al. IEEE 2013

ScrumBut, but Does It Matter? [18] Ville T. Heikkila, Maria Paasi-
vaara and Casper Lassenius IEEE 2013

Where Is Scrum in the Current Agile World? [19] Georgia M. Kapitsaki and
Marios Christou IEEE 2014

An Empirical Study of Social Success Factors for
Agile Software Development [20]

Evelyn van Kelle, Per van
der Wijst. Aske Plaat.
JoostVisser

IEEE 2015

Agile Adoption Story from NHN [21] Eunha Kim and Seokmoon
Ryoo IEEE 2012

Beyond Mainstream Adoption: From Agile Software
Development to Agile Organizational Change [22] David Bustard IEEE 2012

How We Successfully Adapted Agile for a Research
Heavy Engineering Software Team [23]

Alfred A. Lobber , Kyran
D. Mish IEEE 2013

The Maturation of Agile Software Development
Principles and Practice: Observations on
Successive Industrial Studies in 2010 and 2012 [24]

David Bustard, George
Wilkie, Des Greer.

Science
Direct 2013

Operational release planning in large-scale scrum
with multiple stakeholders — A longitudinal case
study at F-Secure corporation [18]

Ville T. Heikkilä, Maria
Paasivaara, et al

Science
Direct 2014

Obstacles to decision making in Agile software
development teams [25]

Meghann Drurya, Kieran
Conboyb, Ken Power

Science
Direct 2012

Agile Principles and Achievement of Success in
Software Development: A Quantitative Study in
Brazilian Organizations [3]

Paulo de Souza B., André
Luiz Zambaldea et al

Science
Direct 2014

The impact of inadequate and dysfunctional
training on Agile transformation process: A
Grounded Theory study [26]

Taghi Javdani
Gandomania, et al

Science
Direct 2014

Towards optimal software engineering: Learning
from agile practice [24]

David Bustard George
Wilkie DesGreer

Springer
Link 2013

The evolution of agile software development in
Brazil [27] Claudia de O. Melo et al Springer

Link 2013

The Role of Communication in Agile Systems
Development: An Analysis of the State of the
Art [28]

Markus Hummel, Dr.
Christoph Rosenkranz. Dr.
Roland Holten

Springer
Link 2012

This table continues on the following page ––––––>

374 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Title Author Database Year
Scrum adoption and architectural extensions
in developing new service applications of large
financial IT systems [29]

Toumas Ihme Springer
Link 2013

Evaluating the impact of an agile
transformation: A longitudinal case study in a
distributed context [30]

Kirsi Korhonen Springer
Link 2013

Strengths and barriers behind the successful
agile deployment-insights from the three software
intensive companies in Finland [31]

Minna Pikkarainen Outi
Salo Raija Kuusela Pekka
Abrahamsson

Springer
Link 2012

Necessary Skills and Attitudes for Development
Team Members in Scrum [32] Penprapa Bootla et al, IEEE 2015

Obstacles to efficient daily meetings in agile
development projects: A case study [33]

Viktoria Gulliksen Stray
et al. IEEE 2013

Cost and effort estimation in agile software
development. Optimization, Reliabilty, and
Information Technology [43].

R Popli and N Chauhan IEEE 2014

A sprint-point based estimation technique in
scrum [42]. R Popli and N Chauhan IEEE 2013

Could social factors influence the effort software
estimation [44]. V. Lenaarduzzi IEEE 2015

Adjusting Story Points Calculation in Scrum Effort
& Time Estimation [45].

H. Zahraoui, M. Abdou,
and J. Idrissi, IEEE 2015

Identification of Inaccurate Effort Estimates in
Agile Software Development [47]

Florian Raith, Ingo Richter,
Robert Lindermeier, and
Gudrun Klinker

IEEE 2013

On using planning poker for estimating user
stories [48].

Viljan Mahnic and Tomaz
Hovelja

Science
Direct 2012

The Impact of Scrum on Customer Satisfaction: An
Empirical Study [50].

B. Cartaxo, A. Araujo, A.
Barreto, and S. Soares, IEEE 2013

Comparison of Functional Size Based Estimation
and Story Points, Based on Effort Estimation
Effectiveness in SCRUM Projects [51].

E. Ungan, N. Cizmeli, and
O. Demirors IEEE 2014

Estimating, planning and managing Agile Web
development projects under a value-based
perspective [53].

C. J. Torrecilla-Salinas, J.
Sedeño, M. J. Escalona,
and M. Mejías

Science
Direct 2015

The results of the SLR were organized into the categories proposed by Shahane et al,
taking as reference the factors model of agile methodologies adoption proposed by in
[34]: people, processes, project, and organization aspects in the company. This model
was adapted by M. Shuhuay et al. in [35] categorizing the factors of the agile method
adoption, which are shown in Figura 2.

375CHAPTER # 21 - TOWARDS A COMPILATION OF PROBLEMS IN THE ADOPTION OF AGILE-SCRUM METHODOLOGIES: A SYSTEMATIC LITERATURE REVIEW

Figure 2. Factors for Agile Methods’ adoption

Table 3 shows the problems found in the SLR, focusing on the adoption of agile methodo-
logies and Scrum.

Table 3. Problems in the Agile Migration

Key issues in the agile migration Category Papers
Organizational culture does not support agile ways of working Organization [17], [19],[27]
Lacks of capacity to change the organizational culture Organization [12], [17]
Organizational problems Organization [17], [19]
Lack of management support Organization [3]
External pressure to use traditional practices Organization [17], [27]
Lack of collaboration and communication with the customer People [19], [26]
Lack of training of the Product Owner and the customer People [27]
Team size People [12], [19], [24], [29]
Team unaligned People [20]
Equipment capacity People [3]
Rotating team members People [27], [29]
Lack of experience with agile methods People [17], [27]
Availability of trained personnel People [20], [32]
Lack of effective communication People [20], [26],[27]
Lack of understanding of agile values People [26]
Inadequate and dysfunctional training People [17]
General resistance to change People [20], [27]
Lack of commitment to decisions People [32]
Continued involvement with the client People [20]
Project size Project [12], [19], 29]
Agility degree Process [20]
Anti-patterns Process [17]

376 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Figure 3 summarizes the classification of the problems found in SLR. Considering our
findings, we can state that the literature reports more people problems.

Figure 3. SLR problems classification.

377CHAPTER # 21 - TOWARDS A COMPILATION OF PROBLEMS IN THE ADOPTION OF AGILE-SCRUM METHODOLOGIES: A SYSTEMATIC LITERATURE REVIEW

In the following sections we analyze each of the problem categories.

5.1	 Organizational aspects

Organizational culture is a shared belief system that permeates an organization or subu-
nit and ultimately influences the actions of people and workgroups [50].

The successful adoption of agile methodologies involves many factors; organizational
culture is one of them, and this factor has great importance in the adoption of Scrum.
We reviewed which the problems are presented in this category, we found the followings:
the organizational culture does not support forms of agile work [17, 19, 27, 3]; it lacks the
capacity to change the organizational culture [17, 3, 26, 36]; organizational problems [24,
20, 3, 26]; lack of support from the heads of companies [17, 19]; and external pressure to
use traditional practices [17, 27].

The Agile methodologies must be used within an agile culture that is characterized by
a broad support for the negotiations, a capacity for change, the collaboration and the
continuous exchange of experiences and knowledge.

According to W. Schneider [55], there are four kinds of organizational culture: collabora-
tion, Control, Cultivation, Competence. It is clear that certain types of culture would be
detrimental or make it impossible to successfully use an agile method [50], due that it is
important to identify if the organization supports the change toward an agile culture. For
transforming from traditional to agile methods, management style should be changed
from “command and control” to “leadership and collaboration” [25].

5.2	 People

Achieving a cooperative process based on the communication and collaboration between
members, who value and trust each other, is critical for the success of agile methods.
Human aspects most of the time act as an obstacle in agile adoption [25].

The change from a traditional development process like waterfall to an agile method
needs a big change to people thinking and of their behavior, for this reason people are a
critical factor in the adoption of Scrum [32, 26]. This is due to the fact that this methodo-
logy believes in self-organization of the members of the development team. The majority
of projects fail because the team lack of effective communication, and the communica-
tion style is more important than the frequency of the communication, we can see that
the informal communication can improve the success of the project.

378 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

There are multiple studies about the role of the people in the agile adoption. Problems
found are as follows: Lack of cooperation and constant communication with the client
[27, 29, 19]; lack of training of the Product Owner and the client [27]; size of the team
[19, 29, 12]; teams not aligned [20]; the abilities of the teams [3]; rotation of members of
the team [29]; lack of experience with the agile methods [17, 27]; availability of trained
personnel [17, 19]; lack of effective communication and misunderstandings [20, 32]; lack
of comprehension of the Agile values [20, 32, 26]; inadequate and dysfunctional training
[26]; overall resistance to change [17]; lack of commitment to the decisions [20, 27]; lack
of agile mindset [46] and lack of constant participation with the customer [32].

The lack of necessary skills, in fact, it can affect the success of the Scrum team. Bootla
et al. [32] propose what these skills should be for each team member; such skills and
attitudes can be used to continuously improve the team capabilities. These skills are
essential to help teams to achieve their goals and success.

Their proposed skills and attitudes are categorized into 3 types as follows:

(1) Technical Skills: Technical skills are directly related to software development
activities.

(2) Soft Skills or People Skills: Since Scrum focuses on a self-organizing team, the pro-
posed soft skills are derived from soft skills related to working with others, to manage
the project, and soft skills related to individuals.

(3) Attitudes: The attitude affects how people behave and perform tasks. Scrum is unlike
other traditional software development methodologies, and each team member attitu-
des toward software development may impact his/her performance.

5.3	 Project

This category comprises the customer satisfaction, cost, duration, size, and comple-
xity [35]. Projects that are over-budget, delivered late, and fall short of user’s expec-
tations have been a common problem area related to the accuracy of estimation for
years, estimating is a serious challenge and estimates are frequently wrong [45] [46].
In the first version of this survey [56], few studies were found in the literature in this
category since the majority of the papers found are focused on organizational aspects
and people, so that we focusing in this category. This category is described in detail
in section VI.

379CHAPTER # 21 - TOWARDS A COMPILATION OF PROBLEMS IN THE ADOPTION OF AGILE-SCRUM METHODOLOGIES: A SYSTEMATIC LITERATURE REVIEW

5.4	 Process

Changing attitudes and moving to agile activities from rigid, adequate and planned acti-
vities is not available without spending enough time, effort and investment [25].

In a study presented by Lober and Mish [23], some problems that appear in the early
stages of the Scrum adoption are identified, such as following: lack of delivery of user
stories, lack of confidence, as well as the times in the planning meetings, daily meetings
and retrospectives can be too long with little value to the attendees.

Some specific situations are:

•• The larger the team the larger meetings are and it is harder to provide value to all
participants.

•• A medium speed and the points for user stories are insufficient to plan a sprint
because of the size of the big team, the fluctuating participation and the speciali-
zation of people.

•• Writing concrete user stories can be difficult due to the inherent uncertainty.

•• Moving the adoption forward to an adequate pace requires transparency, inspec-
tion and adaptation.

All the team involved in the Scrum process must understand what is expected of everyo-
ne. It is very effective to explain why these expectations are set in terms of other people
who are relying on the information.

V. Eloranta, K. Koskimies, T. Mikkonen, and J. Vuorinen [17] refer to some specific problems
in adopting Scrum: (1) The harmful deviations from recommended Scrum practices and;
(2) recommended Scrum practices that are for some reason unsuitable in a particular
context. V. Eloranta, K. Koskimies, T. Mikkonen, and J. Vuorinen made some recommenda-
tions for Scrum’s adoption:

•• For the first type of problem, a company starting in Scrum should be aware of com-
mon deviations that may seem reasonable, but which are actually harmful.

•• For the second type, the understanding of deviations from the norm, Scrum books
provide information for improving the methodology to suit the purposes of the
companies that develop software.

380 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Both types of deviations named Anti-patterns are harmful to the projects.

6.	 Problems in the Project category

6.1	 Customer Satisfaction

The selection of a software development methodology is a vital activity in any software
project. It has a great impact on customer satisfaction and business welfare [52].

Customers play a critical role in the success of agile methods and they should be res-
ponsive, collaborative, authorized, committed and knowledgeable, having such custo-
mers is not easy and this role could be a barrier in the success of agile projects especia-
lly when they join the team for the first time. [25].

Customers probably have different definitions of “success” within a software project. B.
Cartaxo et al in [50] realized a survey that aimed to determine whether there is any im-
pact on customer satisfaction caused by the Scrum adoption. Seven critical factors are
considered for customer satisfaction, and consequently, for project success: time, goals,
quality, communication and transparency, agility, innovation and benchmark.

Their results indicate that it was not possible to establish any evidence that using Scrum
may help to achieve customer satisfaction and, consequently, to increase the success
rates in software projects.

Another study realized by M. Kohlbacher [57] highlights the negative impact of the chan-
ge in requirements on customer satisfaction. Requirement changes during ongoing pro-
duct development projects threaten the desired outcome of the project and therefore
also customer satisfaction.

6.2	 Cost, Size and Duration

Starting a professional software development project soon raises some critical ques-
tions such as: How much will the project cost? When will it finish? How much effort must
be invested in it? Will the investment be returned soon? What are the features our cus-
tomers really need? Being able to answer these questions and some others related to
them is crucial for designing business strategies [53].

Estimation of cost, effort, size and duration of a software project is a difficult task. Accu-
rate estimations of software are critical for both developer and customer [19, 43].

381CHAPTER # 21 - TOWARDS A COMPILATION OF PROBLEMS IN THE ADOPTION OF AGILE-SCRUM METHODOLOGIES: A SYSTEMATIC LITERATURE REVIEW

It has been observed that the current estimation method in Scrum mostly relies on
historical data from past projects and expert opinion but in the absence of historical
data and experts, these methods are not efficient. Ignorance of estimation methods
may cause serious problems like exceeding the budget, not delivered on time, poor
quality and not right product [42].

According to R. Popli [42], several problems are in existing estimation and tracking
methods for Scrum software developments. Some of them are cited next:

•• The first problem is effort estimation: Effort and time estimation at the initial
stage of an agile project is a difficult and challenging task due to volatility and
changing in customer requirements [45]. Effort estimation in Scrum is mainly ba-
sed on story points which are subjective measures and mostly lead to inaccurate
estimates [45]. Accurate estimations are essential for successful management,
most of the unsuccessful software projects fail because of inaccurate estima-
tions [51].

•• The second problem is about Release Date Estimation: the Release planning is
the activity to calculate the actual release date so that the final product is han-
ded over into use for the customer. In Scrum Estimation technique, a release
plan is made but it doesn’t consider various factors like velocity, the cost-benefit
ratio [45].

•• The third problem is that story points cannot be easily related to the time du-
ration because it represents the amount of work and the velocity differs from
team to team.

•• The fourth problem is that because a story point is a relative value, the total
story point value can fluctuate with a slight variation in the baseline story point.
To set the base use story, the agile team finds the simplest user story and deter-
mines story points of other user stories based on the baseline. If the baseline
story point changes, other story points also have to be changed [42].

Scrum Estimation methods may lead to the errors in case of the inexperienced agile
team.

R. Popli and N. Chauhan [42] propose various project and people-related factors that
affect the cost, effort and duration of a software project, this factors are showing in
Figure 4.

382 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Figure 4. R. Popli and N. Chauhan´s factors

H. Zahraoui, M. Abdou, and J. Idrissi in [45] propose to adjust the story points using three
adjustment factors; these factors are: Priority Factor, Story Size Factor and Complexity
Factor.

Priority Factor (PF): User stories (US) are sorted in the product backlog (PB) from high
priority to low priority. According to their survey prioritization of features in release,
planning is based on two dimensions that are urgency and business value.

The urgency of a user story depends on its delivery date imposed by the product owner.
Therefore, most urgent user stories must be integrated into the first sprint.

Business Value means the amount of revenue that might be generated or lost by a user
story. So in Scrum user stories that have the highest Business Value must be delivered
in the first sprint.

Story Size Factor (SF): The story size is a factor that affects the accuracy of scrum esti-
mations because very large stories are more difficult to estimate than small ones. One
of the best practices adopted by scrum team is to split very large stories into small ones
but sometimes they don’t have enough details about these stories

Complexity Factor (CF): Complexity introduces uncertainty to the estimation of each
story in the Product Backlog, so more complexity means more uncertainty [45].

383CHAPTER # 21 - TOWARDS A COMPILATION OF PROBLEMS IN THE ADOPTION OF AGILE-SCRUM METHODOLOGIES: A SYSTEMATIC LITERATURE REVIEW

A lot of information should be taken into account to estimate the effort, such as the
project size, the domain, and many other factors that may significantly influence the
estimation [44].

6.3	 Complexity

This section and section B are related closely, complexity refers that how complex is to
develop a project. Technical complexity includes a number of aspects such as numbers of
technologies are involved, the number of the technical interfaces. Management comple-
xity includes project staffing and management etc. Complexity is the major aspect in the
estimation of a project, the complexity of the project increase cost, size and duration [42].

Scrum does not provide a unique estimation technique. However, the most used tech-
nique is Planning Poker [47] [48]. Planning Poker is a group-based estimation technique
for estimating the size of user stories and developing release and iteration plans [45],
[46, 48].

The game utilizes playing cards, printed with numbers based on a modified Fibonacci
sequence similar to 1-2-3-5-8-13-21- 40-100. The Product Owner and all members of the
development unit meet to discuss the Product Backlog requirements for the purpose of
reaching consensus-based estimations [45, 48, 49].

Planning poker brings together multiple expert opinions to do the estimation. Because
these experts form a cross- functional team from all disciplines on a software project,
they are better suited to do the estimation task than anyone else. Group discussion is
the basis of planning poker, and those discussions lead to an averaging of sorts of the
individual estimates [54].

Planning poker has many benefits. However, this method is not efficient because the re-
sult is always based on the observation of an expert and his/her experience. The story-
points is a relative value and cannot be easily related to the time duration [43], [47], [48].
Moreover, the team member decision is unclear because they take into account only the
complexity in general.

Usually in the practice, every member of the team assigns a complexity of a number of
points (in this case five points) to a task but is unclear how the team member assigns
the punctuation. Figure 5 shows this scenario. It is necessary to break down this varia-
ble (complexity) into its elements, in order to establish clearly how he/she chose the
decision. By the moment, the evaluation is based on factors that are difficult to identify.

384 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Figure 5. Planning Poker decision

Taking into account these circumstances, we can deduce that there is a strong need to
analyze the different factors that affect the estimation of the Scrum project.

Moreover, there are a lot of factors that can cause uncertainty in effort estimation using
story points. Those factors are usually related to the nature of the project to be develo-
ped, the context, and the knowledge of the domain and last, but not least, social factors
such as the interaction in the development team also should be taken into account [44].

A set of social factors has been identified by V. Lenarduzzi [44]: Language and cultural di-
fferences, communication, team structure, communication process, work pressure, team
size, competence level, familiarity in the team, managerial skill, working time, experience
of previous projects, and technical ability.

7.	 Conclusions and future work

In this chapter, we presented a Systematic Literature Review about agile methodologies
adoption, with a principal focus on Scrum. We emphasize different problems presented
in agile adoption, especially on Scrum adoption.

We found that agile adoption always comes with special challenges; consequently, chan-
ges in the organization are critical to a successful outcome. The organization’s culture
is one of the main causes of resistance to change likewise other factors in making agile
methodologies such as people, which is the largest existing impediment to the adoption.
These problems must be treated to improve the adoption of agile methodologies and
changing traditional development process to agile methods.

Taking into account our experience working with traditional life cycle models and pro-
cess models, we find some best practices that can be a complement to Scrum. In pre-
vious publications [41] we presented a first proposal to adapt documenting practices

385CHAPTER # 21 - TOWARDS A COMPILATION OF PROBLEMS IN THE ADOPTION OF AGILE-SCRUM METHODOLOGIES: A SYSTEMATIC LITERATURE REVIEW

into the agile process for mobile applications, specifically in the requirements gathering
and analysis and design stages.

In the project category, we can see that planning of the project is a crucial activity for
the successful of the project. In the other hand, the estimations are important, as they
are the basis for planning the next release in terms of prioritizing features and staffing
the development. As we can see, a big set of information should be taken into account
to estimate the effort and many factors that may significantly influence the estimation.
These circumstances allow us to see that there is strong need to analyze the factors that
affect the estimation of the Scrum project team for that we are focusing in this area.

As future work, we are preparing a model for tasks estimation in Scrum by considering
the complexity in the main important factors that compose it.

Furthermore, we are preparing a framework in which we will establish our own values
and practices for Scrum and some complementary practices not explicit in the methodo-
logy but considered as necessary to make an easy adoption. We are formulating a model
based on Bayesian Networks to represent all the complexity’s factors and their relation-
ships. This model will allow us to assist novice software developers and small companies
in estimating tasks.

8.	 References

[1] 	 H. Hajjdiab and Al Shaima Taleb, “Adopting Agile Software Development: Issues and
Challenges,” International Journal of Managing Value and Supply Chains, vol. 2, no.
3, pp. 1–10, 2011.

[2] 	 P. Letelier, “Metodologías Ágiles en el Desarrollo de Software,” in de Valencia, Valen-
cia, 2009.

[3] 	 P. H. D. S. Bermejo, A. L. Zambalde, A. O. Tonelli, S. A. Souza, L. A. Zuppo, and P. L. Rosa,
“Agile Principles and Achievement of Success in Software Development: A Quantita-
tive Study in Brazilian Organizations,” Procedia Technology, vol. 16, pp. 718–727, 2014.

[4] 	 R. Pressman, Ingenieria de Software Un Enfoque Práctico. Mc Graw Hill, 6ta ed.,
2008.

[5] 	 S. Overhage and S. Schlauderer, “Investigating the Long-Term Acceptance of Agile
Methodologies: An Empirical Study of Developer Perceptions in Scrum Projects,” in
2012 45th Hawaii International Conference on System Sciences, pp. 5452–5461, IEEE,
jan 2012.

[6] 	 M. Davila Muñoz, Desarrollo de una especialización de moprosoft basada en el mé-
todo ágil Scrum. PhD thesis, Universidad Nacional Autonoma de México, 2008.

386 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

[7] 	 D. Pauly and D. Basten, “Do Daily Scrums Have to Take Place Each Day? A Case Study
of Customized Scrum Principles at an E-Commerce Company,” Hawaii International
Conference on System Sciences, pp. 5074–5083, 2015.

[8] 	 K. Schwaber and J. Sutherland, “The scrum guide,” Scrum. Org, October, vol. 2, no.
July, p. 17, 2011.

[9] 	 M. Gannon, “An Agile Implementation of SCRUM,” Proceedings of the IEEE Aerospace
Conference, Big Sky (MT), USA, 2-9 March, 2013, pp. 1–7, 2013.

[10] 	B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman,
“Systematic literature reviews in J. Clerk Maxwell, A Treatise on Electricity and Mag-
netism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73.

[11] 	 M. Dahlem, “Agile Practices in Practice - A Mapping Study,” 2014.
[12] 	 L. Kompella, “Agile methods, organizational culture and agility: some insights,” Pro-

ceedings of the 7th International Workshop on Cooperative and Human Aspects of
Software Engineering -CHASE 2014, pp. 40–47, 2014.

[13] 	 K. Kuusinen and K. Väänänen-Vainio-Mattila, “How to make agile UX work more effi-
cient: management and sales perspectives,” Proceeding NordiCHI ’12 Proceedings of
the 7th Nordic Conference on Human-Computer Interaction: Making Sense Through
Design, pp. 139–148, 2012.

[14] 	 D. X. Houston, “Agility beyond Software Development,” pp. 65–69, 2014.
[15] 	 G. Alaa, “A multi-faceted Roadmap of Requirements Traceability Types Adoption in

SCRUM: An Empirical Study,” pp. 1–9, 2014.
[16] 	 J. M. Bass, “Influences on agile practice tailoring in enterprise software develop-

ment,” Proceedings - Agile India 2012, Agile India 2012, pp. 1–9, 2012.
[17] 	 V. Eloranta, K. Koskimies, T. Mikkonen, and J. Vuorinen, “Scrum Anti-Patterns – An

Empirical Study,” 2013 20th Asia- Pacific Software Engineering Conference (APSEC),
vol. 1, pp. 503–510, 2013.

[18] 	 V. T. Heikkilä, M. Paasivaara, K. Rautiainen, C. Lassenius, T. Toivola, and J. Järvinen,
“Operational release planning in large-scale scrum with multiple stakeholders — A
longitudinal case study at F-Secure corporation,” Information and Software Techno-
logy, vol. 57, pp. 116–140, 2014.

[19] 	 M. Kapitsaki and M. Christou, “Where Is Scrum in the Current Agile World?” Proce-
edings of the 9th International Conference on Evaluation of Novel Approaches to
Software Engineering, pp. 101–108, 2014.

[20] 	E. V. Kelle, J. Visser, A. Plaat, and P. V. D. Wijst, “An Empirical Study into Social Suc-
cess Factors for Agile Software Development,” 2015 IEEE/ACM 8th International
Workshop on Cooperative and Human Aspects of Software Engineering, pp. 77–80,
2015.

[21] 	 E. Kim and S. Ryoo, “Agile adoption story from NHN,” Proceedings - International
Computer Software and Applications Conference, pp. 476–481, 2012.

387CHAPTER # 21 - TOWARDS A COMPILATION OF PROBLEMS IN THE ADOPTION OF AGILE-SCRUM METHODOLOGIES: A SYSTEMATIC LITERATURE REVIEW

[22] 	 D. Bustard, “Beyond mainstream adoption: From agile software development to agile
organizational change,” Proceedings -2012 IEEE 19th International Conference and
Workshops on Engineering of Computer-Based Systems, ECBS 2012, pp. 90– 97, 2012.

[23] 	 A. A. Lorber and K. D. Mish, “How We Successfully Adapted Agile for a Research-Heavy
Engineering Software Team,” in 2013 Agile Conference, pp. 156–163, IEEE, aug 2013.

[24] 	D. Bustard, G. Wilkie, and D. Greer, “The maturation of agile software development
principles and practice: Observations on successive industrial studies in 2010 and
2012,” Proceedings of the International Symposium and Workshop on Engineering
of Computer Based Systems, pp. 139–146, 2013.

[25] 	 M. Drury, K. Conboy, and K. Power, “Obstacles to decision making in Agile software de-
velopment teams,” Journal of Systems and Software, vol. 85, no. 6, pp. 1239–1254, 2012.

[26] 	T. J. Gandomani, H. Zulzalil, A. Azim, and A. Ghani, “How Human Aspects Impress Agile
Software Development Transition and Adoption,” International Journal of Software
Engineering and Its Applications, vol. 8, no. 1, pp. 129–148, 2014.

[27] 	 C. de O. Melo, V. Santos, E. Katayama, H. Corbucci, R. Prikladnicki, A. Goldman, and F.
Kon, “The evolution of agile software development in Brazil,” Journal of the Brazilian
Computer Society, vol. 19, no. 4, pp. 523–552, 2013.

[28] 	M. Hummel, C. Rosenkranz, and R. Holten, “The Role of Communication in Agile Sys-
tems Development: An Analysis of the State of the Art,” Business and Information
Systems Engineering, vol. 5, no. 5, pp. 343–355, 2012.

[29] 	T. Ihme, “Scrum adoption and architectural extensions in developing new service
applications of large financial IT systems,” Journal of the Brazilian Computer Socie-
ty, vol. 19, no. 3, pp. 257–274, 2013.

[30] 	K. Korhonen, “Evaluating the impact of an agile transformation: A longitudinal
case study in a distributed context,” Software Quality Journal, vol. 21, no. 4, pp.
599–624, 2013.

[31] 	 M. Pikkarainen, O. Salo, R. Kuusela, and P. Abrahamsson, “Strengths and barriers be-
hind the successful agile deployment insights from the three software intensive com-
panies in Finland,” Empirical Software Engineering, vol. 17, no. 6, pp. 675– 702, 2012.

[32] 	P. Bootla, O. Rojanapornpun, P. Mongkolnam, T. Dingsoyr, and T. Dyba, “Necessary
Skills and Attitudes for Development Team Members in Scrum:” pp. 184–189, 2015.

[33] 	V. G. Stray, Y. Lindsjorn, and D. I. K. Sjoberg, “Obstacles to efficient daily meetings in
agile development projects: A case study,” International Symposium on Empirical
Software Engineering and Measurement, pp. 95–102, 2013.

[34] 	D. Shahane, P. Jamsandekar, and D. Shahane, “Factors Influencing the Agile Methods
in Practice-Literature Survey & Review,” pp. 556–560, 2014.

[35] 	M. Sihuay, A. Dávila, M. Pessoa, E. D. Posgrado, U. Nacional, and M. D. San, “Factores
en la Adopción de Métodos Ágiles en el Proceso de Desarrollo de Software: Revisión
Sistemática de la Literatura,”

388 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

[36] 	T. J. Gandomani and M. Z. Nafchi, “An empirically-developed framework for Agile
transition and adoption: A Grounded Theory approach,” Journal of Systems and
Software, vol. 107, pp. 204–219, 2015.

[37] 	 S. Nerur, R. Mahapatra, and G. Mangalaraj, “Challenges of Migrating to Agile Methodo-
logies”, COMMUNICATIONS OF THE ACM May 2005/Vol. 48, No. 5, pp. 73-78

[38] 	J. Freeman. Common Problems Experienced When Adopting Agile Development, on
line August 5th, 2015, retrieved from: http://www.seguetech.com/blog/2015/08/05/
CommonProblemsadoptingagiledevelopment, on January 31, 2016.

[39] 	K. Jammalamadaka, R. Krishna, “AGILE SOFTWARE DEVELOPMENT AND CHALLENGES”,
International Journal of Research in Engineering and Technology, Volume: 02, Issue:
08, Aug-2013, pp. 125-129.

[40] 	A. Mahanti, Challenges in Enterprise Adoptionof Agile Methods – A Survey, Journal
of Computing and Information Technology - CIT 14, 2006, 3, 197–206.

[41] 	 R. Juárez-Ramírez, G. Licea, I. Barriba, V. Izquierdo, A. Angeles. (2011). “Engineering
the development process for user interfaces: Toward improving usability of Mobile
applications”; In Communications in Computer and Information Science Vol. 167,
Springer. ISBN 978-3-642-22026-5, pp. 65-79. DOI: 10.1007/978-3-642-22027-2.

[42] 	R. Popli and N. Chauhan, “A sprint-point based estimation technique in scrum,” Pro-
ceedings of the 2013 International Conference on Information Systems and Compu-
ter Networks, ISCON 2013, pp. 98–103, 2013.

[43] 	R Popli and N Chauhan. Cost and effort estimation in agile software development.
Optimization, Reliabilty, and Information Technology (ICROIT), 2014 International
Conference on, pages 57–61, 2014.

[44] 	V. Lenarduzzi, “Could social factors influence the effort software estimation?” Pro-
ceedings of the 7th International Workshop on Social Software Engineering - SSE
2015, no. May, pp. 21–24,2015.

[45] 	H. Zahraoui, M. Abdou, and J. Idrissi, “Adjusting Story Points Calculation in Scrum
Effort & Time Estimation,” 2015.

[46] 	N. C. Haugen, “An empirical study of using planning poker for user story estimation,”
Proceedings - AGILE Conference, 2006, vol. 2006, pp. 23–31, 2006

[47] 	 Florian Raith, Ingo Richter, Robert Lindermeier, and Gudrun Klinker. Identification of
Inaccurate Effort Estimates in Agile Software De- velopment. 2013 20th Asia-Pacific
Software Engineering Conference (APSEC), pages 67–72, 2013.

[48] 	Viljan Mahnic and Tomaz Hovelja. On using planning poker for estimating user sto-
ries. Journal of Systems and Software, 85(9):2086– 2095, 2012.

[49] 	Kjetil Moløkken-Østvold, Nils Christian Haugen, and Hans Christian Benestad. Using
planning poker for combining expert estimates in software projects. Journal of Sys-
tems and Software, 81(12):2106–2117, 2008.

389CHAPTER # 21 - TOWARDS A COMPILATION OF PROBLEMS IN THE ADOPTION OF AGILE-SCRUM METHODOLOGIES: A SYSTEMATIC LITERATURE REVIEW

[50] 	B. Cartaxo, A. Araujo, A. S. Barreto, and S. Soares, “The Impact of Scrum on Customer
Satisfaction: An Empirical Study,” in 2013 27th Brazilian Symposium on Software En-
gineering, pp. 129–136, IEEE, oct 2013.

[51] 	 E. Ungan, N. Cizmeli, and O. Demirors, “Comparison of Functional Size Based Estima-
tion and Story Points, Based on Effort Estimation Effectiveness in SCRUM Projects,”
2014 40th EUROMICRO Conference on Software Engineering and Advanced Applica-
tions, pp. 77–80, 2014

[52] 	A. M. M. Hamed and H. Abushama, “Popular agile approaches in software develop-
ment: Review and analysis,” Proceedings - 2013 International Conference on Com-
puter, Electrical and Electronics Engineering: ’Research Makes a Difference’, ICCEEE
2013, pp. 160–166, 2013.

[53] 	C. J. Torrecilla-Salinas, J. Sedeño, M. J. Escalona, and M. Mejías, “Estimating, planning
and managing Agile Web development projects under a value-based perspective,”
Information and Software Technology, vol. 61, pp. 124–144, 2015.

[54] 	Mike Cohn. Techniques for Estimating. Agile Estimating and Planning, pages 49–60,
2005.

[55] 	D. Maximini, “The Scrum Culture,” pp. 173–180, 2015.
[56] 	J. López-Martínez, R. Juárez-Ramírez, C. Huertas, S. Jiménez, and C. Guerra-García,

“Problems in the Adoption of Agile-Scrum Methodologies: A Systematic Literature
Review,” 2016.

[57] 	 M. Kohlbacher, E. Stelzmann, and S. Maierhofer, “Do agile software development
practices increase customer satisfaction in Systems Engineering projects?” Systems
Conference (SysCon), 2011 IEEE International, pp. 168–172, 2011.

[58] 	Inayat, I., et al. A systematic literature review on agile requirements engineering
practices and challenges. Computers in Human Behavior (2014), http://dx.doi.
org/10.1016/j.chb.2014.10.046

[59] 	A. Kanane, “Challenges related to the adoption of Scrum,” pp. 1–31, 2014.
[60] 	E. Cardozo, B. Araújo Neto, A. Barza, C. França, and F. da Silvia, “SCRUM and Producti-

vity in Software Projects: A Systematic Literature Review,” 14th International Confe-
rence on Evaluation and Assessment in Software Engineering (EASE), pp. 1–4, 2010.

[61] 	 M. Kaisti, V. Rantala, T. Mujunen, S. Hyrynsalmi, K. Könnölä, T. Mäkilä, and T. Lehto-
nen, “Agile methods for embedded systems development - a literature review and a
mapping study,” EURASIP Journal on Embedded Systems, vol. 2013, no. 1, p. 15, 2013.

[62] 	T. Dingsoyr, S Nerur, V. Balijepally, N. Moe. A decade of agile methodologies: Towards
explaining agile software development / The Journal of Systems and Software 85
(2012) 1213– 1221.

390

Chapter # 22
An Instructional Proposal for
study of concepts on Software
Engineering assisted by Ludic
Virtual Learning Environments

Raúl A. Aguilar, Juan P. Ucán, Julio C. Díaz y Antonio A. Aguileta
Facultad de Matemáticas,
Universidad Autónoma de Yucatán
Mérida, México
{avera, juan.ucan, julio.diaz, aaguilet}@correo.uady.mx

1.	 Introduction

Advances in Technology and Instruction have enabled to diversify Education Support
Systems, initially, developing of this kind of system adopted the Computer Aided Ins-
truction paradigm and subsequently it was refined with Artificial Intelligence techni-
ques implemented in the Computer Aided Intelligent Instruction paradigm [1]. In re-
cent decades, one of the lines of current research in the field of Computer Education
revolves around the so-called Learning Environments, also known as Virtual Learning
Environments [2], which are conceived as computer systems designed on purpose as
spaces rich in situations that should promote meaningful learning in students.

In the instructional scope, a strategy that we find interesting to integrate to promo-
te motivation among learners is the incorporation of ludic sceneries, also known as
educational games. According to [3] the use of educational games as learning tools is
a promising approach due to their abilities to teach and reinforce not only knowledge
but also important skills such as problem-solving, collaboration, and communication.

In this chapter we describe an Instructional Proposal assisted by Ludic Virtual Lear-
ning Environments (VLE) that use of a competitive goal structure [4] in which a stu-
dent —while playing— reviews concepts [5] associated with a course of Software
Engineering.

391CHAPTER # 22 - AN INSTRUCTIONAL PROPOSAL FOR STUDY OF CONCEPTS ON SOFTWARE ENGINEERING ASSISTED BY LUDIC VIRTUAL LEARNING ENVIRONMENTS

The following section presents a brief reflection on Education in Software Engineering
and educational program used as a reference in this work. The third section describes
the performance of MemoSoft, VLE developed for use with students from educational
programs in the area of Software Engineering; rules and dynamics of the instructional
ludic proposal are also described in that section. The fourth section, the software deve-
lopment methodology used —based in UWE— to implement prototypes VLE is presented.
In section five, describes in detail the pilot test with students as part of the process of
empirical validation of our proposal. Finally, the authors’ conclusions about the instruc-
tional proposal to use a Ludic VLE reviewing concepts in the area of Software Enginee-
ring are presented, as well as thanks to all who contributed to the development of the
proposal is reported in this chapter.

2.	 Education on software engineering

Software Engineering (SE) is a professional discipline that will meet the next year just
half a century of existence. In education, the development of the discipline began in
1978 with graduate programs in the United States, and in 1987 with programs in the un-
dergraduate level in the UK. In the case of Mexico, the programs in the area of Software
Engineering not see the light in the last century; incidentally is 2004 the year in which
they begin to offer both the first master’s program at the Center for Research in Applied
Mathematics (CIMAT, for its acronym in Spanish), and the first undergraduate program
offered in Mexico [6].

Education on Software Engineering has been influenced by entities such as the Institute
of Electrical and Electronic Engineers (IEEE) who published in 2004 and updated in 2014,
the Guide to the Software Engineering Body of Knowledge —called SWEBOK— document
that provides a consensually validated characterization of the bounds of the

Software Engineering discipline and to provide a topical access to the Body of Knowled-
ge supporting that discipline [7]. Association for Computing Machinery (ACM) is another
entity, which together with the IEEE-Computer Society published 2004 and updated in
2015, Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering,
which can serve as a reference for Educational Institutions and Accreditation Councils [8].

In Mexico, the National Association of Computer Education Institutions (ANIEI, for its
acronym in Spanish) established in October 1982, in the absence of a core of knowledge
for a professional Computer, it started working since 1983 on a set of Curricular Model
Higher Level of Informatics and Computing; this proposal has four professional profiles
in Informatics and Computing, among which is the profile of Software Engineer [9].

392 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

In our proposal the VLE uses as a reference the curriculum of the first Undergraduate
Degree Program in Software Engineering offered in Mexico; It should be noted that this
program has been nationally recognized for its educational quality , being accredited in
2013 by the National Accreditation Council in Informatics and Computing (CONAIC, for
its acronym in Spanish), as well as the recognition received by the National Assessment
Center (CENEVAL, for its acronym in Spanish) to enter in 2014 to the Registry of Programs
Academic Degree High Performance - EGEL , and endorse its membership in 2015. Figure
1 illustrates the list of subjects considered in the VLE.

Figure 1. List of subjects considered in the VLE.

3.	 Memosoft: A Ludic VLE

MemoSoft is a Ludic VLE which aims to assist students in reviewing concepts related to
Software Engineering topics. The instructional proposal to carry out an adaptation of
the popular game “Memorama” in which a set of pairs of hidden images are distributed
on a game table; players must, at every turn, be revealing pairs of cards and memo-
rizing the position in the table images of both the player displays, like his opponent;
each player keeps his turn and accumulate points to be revealing pairs of matching
images.

The second prototype MemoSoft was implemented based on the requirements specifi-
cation of the first prototype described in [10] and incorporated additional requirements,
such as responsive design [11] which was built to be adaptable to any electronic device
—telephone phone, tablet, etc. Figure 2 illustrates the initial screen of MemoSoft 2.0 run
from a tablet.

393CHAPTER # 22 - AN INSTRUCTIONAL PROPOSAL FOR STUDY OF CONCEPTS ON SOFTWARE ENGINEERING ASSISTED BY LUDIC VIRTUAL LEARNING ENVIRONMENTS

Figure 2. Inicial Screen MemoSoft 2.0

We have adapted Memorama dynamics. In this popular game, the game begins turning
over couple of cards —with the same figure — and deals with the figure down randomly
so it is not possible to see the image that is in them; a player must find pairs of images,
revealing pairs of cards each turn and memorizing the position in the table of each of
the images. With MemoSoft, players —students really— must uncover couples Concept
- Text description of certain course related to Software Engineering. Table 1 illustrates
an example of couples designed for an optional course called “The Semat Kernel” [12].

Table 1. Couples Concept-Description for a Subject

Concept Description
Alphas Representations of the essential things to work with.
Activity Spaces Representations of the essential things to do.

Customer Area of concern the team needs to understand the stakeholders and the
opportunity to be addressed:

Endeavor Area of concern the team and its way-of-working have to be formed and the
work has to be done.

Stakeholders
(Alpha)

The people, groups, or organizations who affect or are affected by a software
system.

Requirements
(Alpha)

What the software system must do to address the opportunity and satisfy the
stakeholders.

Stakeholder
Representation

This competency encapsulates the ability to gather, communicate and balance
the needs of other stakeholders, and accurately represent their views.

Development This competency encapsulates the ability to design and program effective
software systems following the standards and norms agreed upon by the team.

Testing This competency encapsulates the ability to test a system, verifying that it is
usable and that it meets the requirements.

Leadership This competency enable a person to inspire and motivate a group of people
to achieve a successful conclusion to their work and to meet their objectives.

394 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

In a ring game, students should not only memorize the position of cards but also link
the descriptions with the disclosed concepts, such a dynamic opportunity to reaffirm
the theory studied during class sessions. According to the specifications defined for
MemoSoft, at the beginning of the game, a trainee must select the theme, the level do-
main, and the number of players; in the case of the second prototype —implemented
for individual assessment by a group of students— the game it was configured for single
player (see Figure 3). With respect to the domain for the game, MemoSoft 2.0 considers
three levels of difficulty, and associated with a limited period of player participation in
a session time:

•• Easy (400 seconds),

•• Medium (300 seconds),

•• Hard (200 seconds).

Figure 3. Game setup screen.

At the start of a game the position of each of the letters of concepts (blue) and des-
criptions (pink) is assigned randomly by the VLE and placed face down (hidden); player
timer is initialized according to the selected level. Figure 4 illustrates the beginning of
a game level —at de medium level— with the nine hidden pairs in the MemoSoft 2.0. It
is noteworthy that another of the improvements implemented in this second prototype
was the reduction in the number of couples considered in a ring game in MemoSoft 1.0
[10], the number of pairs is ten. However, to increase the size of the letters and typogra-
phy of texts as well as to eliminate the possibility of a tie between players — at having
an even number of cards in the game—it was decided to reduce the number of cards
couple (see Figure 4).

395CHAPTER # 22 - AN INSTRUCTIONAL PROPOSAL FOR STUDY OF CONCEPTS ON SOFTWARE ENGINEERING ASSISTED BY LUDIC VIRTUAL LEARNING ENVIRONMENTS

Figure 4. View of the initial state of a game MemoSoft Ver. 2.0

On each turn, the student can turn a couple of cards at a time, and to decide if the cards
are linked disclosed, according to your choice, four events are triggered as shown below

(1) Pair of right cards and the player chooses “Pair”

	 à Collect three points,

(2) Pair of right cards and the player chooses “Not Pair”

	 à Are subtracted three points,

(3) Pair of incorrect cards and the player chooses “Pair”

	 à Are subtracted 3 points,

(4) Pair of incorrect cards and the player chooses “Not Pair”

	 à Collect one point.

Note: Note that in (1) the player gets a new turn.

In the case of a game with two players, as has been implemented in Memosoft 1.0, a
course of events between two players could be illustrated in the following case (see
Figure 5):

396 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Case 1

(1) The player #1 has -1 point earned for 9 innings, and the combination was:

He found three pairs = 9 points.

I was wrong 3 times [PAIR pressing the button] = -9 points

I was wrong 1 time [NOT PAIR pressing the button] = -3 points

He found two letters that were not couples = 2 points

(2) Player #2 has –8 points that has accumulated in 6 innings, the combination was:

Found 1 pair = 3 points.

I was wrong 4 times = - 12 points

1 couple found they were not partners = 1 point

Figure 5. Case 1 in MemoSoft 1.0

To conclude a two-player game in Memosoft, there are three completion events:

•• Final 1. None was time runs out and the first and second place winner are determi-
ned depending on the score.

•• Final 2. That the # 1 player runs out of time and the player 2 you are not exhausted
and find the missing couple. It is determined the first and second place winner
based on the score.

397CHAPTER # 22 - AN INSTRUCTIONAL PROPOSAL FOR STUDY OF CONCEPTS ON SOFTWARE ENGINEERING ASSISTED BY LUDIC VIRTUAL LEARNING ENVIRONMENTS

•• Final 3. Both players are timing out, and determines the first and second place win-
ner based on the score.

In the event that a student is exercised individually —as in the case of the pilot test in
MemoSoft 2.0— the result is reported based on the number of pairs found and the num-
ber of accumulated points and have two completion events:

•• Final 1. That the player is timing out and has not found all the missing couples; it
tells you your score and number of couples found.

•• Final 2. The player discovers all couples; the player has won (see Figure 6).

Figure 6. Final 2 in MemoSoft 2.0

MemoSoft 2.0 also provides a User Manager, with which the actions of registration, dele-
tion and modification of users (Figure 7) are made.

Figure 7. User Manager Vier in MemoSoft 2.0

398 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

On the other hand, for the registration of new couples concept-description associated
with new subjects, MemoSoft 2.0 has Concepts Manager which can be captured each pair
individually, or loaded via an Excel file (see Figure 8).

Figure 8. Concepts Manager View in MemoSoft 2.0

4.	 VLE Development Using Web Engineering

MemoSoft is a hypertext application designed to be used individually or collectively via
Internet. By its nature, MemoSoft was developed using Web Engineering, i.e. applying
systematic, disciplined and quantifiable methodologies in the efficient development,
operation and development of high-quality applications on the World Wide Web [11]. For
this purpose, UML-based Web Engineering (UWE) technology was selected. UWE propo-
ses the development of five models [12]:

•• Requirements Model. Documents functional requirements of the Web application
through a Use Case Model.

•• Content Model. Define, by a class diagram, the concepts involved in the application.

•• Navigation Model. It is used to represent navigation within the application and a set
of structures such as indexes, menus and queries.

•• Presentation Model. Provides an abstract view of the user interface of a web
application.

•• Process Model. Represents the appearance of activities that connect with every
kind of process.

399CHAPTER # 22 - AN INSTRUCTIONAL PROPOSAL FOR STUDY OF CONCEPTS ON SOFTWARE ENGINEERING ASSISTED BY LUDIC VIRTUAL LEARNING ENVIRONMENTS

Due to limitations on the extension of this work, in this section only three of these mo-
dels are presented: Content Model, which corresponds to a traditional Object Oriented
Model that describes the entities using UML notation, the Presentation Model, in which
interface objects is described, and Process Model.

4.1	 Content Model

Content Model corresponds to a traditional Object Oriented Model and provides a vi-
sual specification of the information in the primary domain of the web application. In
Figure 9, the class diagram for the Model Content is presented.

Figure 9. Content Model

As can be seen, the Content Model defines the following classes: Index class contains
data for user registration; AdminPanel class contains information about the game sub-
ject; the gameSettings class contains the configuration of a game, such as difficulty,
subject and number of players, and Game class contains game information such as
cards, player and the elapsed time for the game.

4.2	 Presentation Model

Presentation Model provides both Navigation and Process classes not displayed in
the Navigation Model and belong to this Web application. Presentation Model des-
cribes the basic elements of the user interface, i.e., text, images, links and forms, and
others.

400 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

This model facilitates the design of the elements in terms of their position and function
before construction. Figure 10 illustrates the modeling of the MemoSoft main page (Index).

Figure 10. Presentation Page: Index

Main Page, as displayed in Figure 10, is modeled on a “presentationPage”, texts are mo-
deled using “text”, and “bottom” for sending the “ inputForm”. In Figure 11, configuration
page for a gameplay is modeled.

Figure 11. Configuración de una partida

In modeling the configuration page, a template has been integrated, where topic, diffi-
culty and number of players can be selected, using «selection» class, and «button» class
for the submit button; at the top remains the header and also it integrates an «imageIn-
put» class for the figures displayed in the game. Figure 12 shows the page where the

401CHAPTER # 22 - AN INSTRUCTIONAL PROPOSAL FOR STUDY OF CONCEPTS ON SOFTWARE ENGINEERING ASSISTED BY LUDIC VIRTUAL LEARNING ENVIRONMENTS

game is displayed. The stereotype “customComponents” organizes, at the right side, the
game cards distribution; on the left side of the page the player’s name, time and score
are displayed, and they are modeled with the stereotype «text».

Figure 12. Página de juego o partida

4.3	 Process Model

The MemoSoft navigation can be described by processes classes that represent the in-
put and output of business processes. In the process model, both process structure
and the flow of activities connected with each «processClass» are modeled. Figure 13
illustrates the activities of a game session with MemoSoft. Once the player is registered,
sequential processes are choice of subject, choice of difficulty level and subsequently
the number of players; from this point, the game starts.

Figure 13. Modelo de procesos

402 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

4.4	 Technology Used in MemoSoft

For the first MemoSoft prototype, we decided to use the AJAX technology (see Figure
14). AJAX uses the JavaScript XMLHttpRequest object for asynchronous requests to the
server; that is, requests which do not require updating or refreshing the whole page.
The advantages of using XMLHttpRequest for Web applications are 1) send or recei-
ve information from or to the server, 2) ask the server to perform operations, and 3)
change the appearance of the current Web page. The above, without the user having
to be redirected to another page, and without changing the element that has the fo-
cus [15].

In the development of the prototype it has been used PHP, and data persistence mo-
del uses MySQL. Also, in the client-side, one of the frameworks with AJAX JQuery UI
is implemented [16].

Figure 14. Ajax Architecture used in MemoSoft

Notably, all the technologies used for the development of MemoSoft, are open
source, as one of the practices undertaken by our research group for software
development.

5.	 Empiric Validation

For empirical validating of the instructional proposal, a pilot test with the students
was planned, following some of the principles, which guide its development [17].

5.1	 Goals

The first goal of the test consisted on validating the fulfilment of technical and peda-
gogical aspects [18]. Table 2 lists the factors considered in the evaluation.

403CHAPTER # 22 - AN INSTRUCTIONAL PROPOSAL FOR STUDY OF CONCEPTS ON SOFTWARE ENGINEERING ASSISTED BY LUDIC VIRTUAL LEARNING ENVIRONMENTS

Table 2. Elements considered in the empiric validation

Aspects Factors

Technical
* Usability
* Correctness

Pedagogical
* Instruction
* Didactic Material

In order to obtain an assessment of the factors considered in the test, an instrument
was designed consisting of eight items of structured response and the second section
with three items of non-structured response. Figure 15 shows the first section of the
instrument.

Figure 15. The instrument of evaluation (structured response section).

404 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Factors considered about the technical aspects were:

•• Usability. Facility with which a user makes use of the environment according to the
level of previous preparation (item: 01).

•• Correctness. The capacity of the environment to respond to the requirements for
which it has been developed according to the difficulty level selected (item: 02).

The second aspect considered in the evaluation is related to pedagogical factors:

•• Didactic material. Static (texts, images) and dynamic (sequences, simulations, etc.)
means used to support the instruction process (items: 03, 04, 05 & 06).

•• Instruction. The process by means of which a human tutor promotes the learning
(items: 07 & 08).

The section of free opinions (non-structured response) was used to obtain additional
information about the two aspects mentioned before.

The second goal was to identify the strategies used by students during the session; this
second goal was established with the intention of identifying possible changes in the
rules of the game.

5.2	 Preparation

The VLE target population are students in career courses in Software Engineering; in par-
ticular, MemoSoft was designed by reference to the Curriculum Program that operates at
the Autonomous University of Yucatan (UADY, for its acronym in Spanish).

To carry out the pilot test, one of the groups that studied the educational program in
January-May 2016 period was selected; in particular, the group of students enrolled in
the course Software Development Requirements.

In order to have a greater number of subjects of analysis, the use of VLE individually, as
well as the possibility that students will use their own equipment during exercise was
considered. For this purpose, during the period from January to April, as a final project of
the course called “Web Engineering”, a group of students the same educational program
implemented the second prototype of MemoSoft with features that have been descri-
bed in previous sections and incorporated a set of couples concept-description related
to the topics covered on the subject throughout the course. The prototype was revised

405CHAPTER # 22 - AN INSTRUCTIONAL PROPOSAL FOR STUDY OF CONCEPTS ON SOFTWARE ENGINEERING ASSISTED BY LUDIC VIRTUAL LEARNING ENVIRONMENTS

and released by the research group and proceeded to request authorization for installa-
tion on one of the servers of the institution; finally, MemoSoft 2.0 was available for use
through the network of the institution from the third week of May.

Note that the teaching of the subject did not undergo modification during the course,
and was implemented according to the initial educational planning.

The pilot test of MemoSoft with students, initially was conceived as part of the dynamics
of one of the class sessions; however, one of the recommendations of the audience
during the presentation of the work in the CONISOFT [10], was the MemoSoft use in an
evaluation activity, which we found the activity quite interesting to implement; once dis-
cussed, the research group decided to incorporate this activity in the latest performance
test scheduled at the end of the course. According to educational planning, the second
performance test corresponds to units 5, 6, 7 and 8 was scheduled for May 20, 2016.

The physical space for conducting the test, a room computer center with capacity for
30 students was used, and functionality of the equipment was verified prior to test
execution.

In the case of the assessment, a two section instrument was designed: the first section
with five items unstructured response to the issues discussed in class, and a second sec-
tion consisted of the use of MemoSoft in two sessions of play. The second section was
also an opportunity to earn additional points to the value of the test; this mechanism
was incorporated as an aspect of extrinsic motivation for the game, which has been re-
ported among good practices in designs using the theory of Gamification [19].

5.3	 Execution

The pilot test implementation was conducted in an evaluation session of the course
Software Development Requirements; performance test for students was designed to be
completed in a maximum time of 120 minutes, and the session was organized as follows:

•• Reading and clarification of doubts about assessment tool, by the teacher, (5’-10’).

•• Resolution in writing of Section I of the assessment instrument (70’- 80’).

•• Using computer equipment, and following the instructions in section II of the ins-
trument, complete two sessions of play with MemoSoft (12’-15’).

•• Responding to an opinion poll (10’- 15’).

406 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

The number of students enrolled in the course was 23, however, three students, for va-
rious reasons, did not attend the evaluation session, so that the sample consisted of 20
male students —the only female student enrolled in the group did not attend for initia-
ting a research stay in Canada.

It is noteworthy that the dynamics of the performance test for the second section of the
evaluation instrument —the game with MemoSoft— was described at the time of the
evaluation session, so students had not used the VLE previously.

5.4	 Results

The results obtained with the implementation of the instrument were very favorable
with respect to the technical aspects; with regard to usability, 95% of respondents ex-
pressed a favorable opinion, and as for the correction factor, 90% of respondents also
expressed a favorable opinion.

Figure 16 shows a graph of the frequency of students’ opinions obtained in each of the
eight items structured response.

Regarding the aspect linked to instruction, 85% gave a favorable opinion on the use of VLE
for exercise activities and 75% in evaluation activities; at this point, non-favorable opinions
regarding its use as a mechanism for evaluating learning can be explained by the views
expressed in response unstructured item, opinions were in the sense that the game can
generate stress in the learner during the evaluation session, or the students could try to
accumulate —according to their strategy— a positive score, rather than try to find couples.

Figure 16. Opinions collected during the pilot test

407CHAPTER # 22 - AN INSTRUCTIONAL PROPOSAL FOR STUDY OF CONCEPTS ON SOFTWARE ENGINEERING ASSISTED BY LUDIC VIRTUAL LEARNING ENVIRONMENTS

In the aspect related to the didactic material, the item that had greater dispersion in
the sense of the opinions —55% favorable, 30% unfavorable and 15% without opinion—
was related to the size and font used, in this sense, although the second prototype was
implemented just thinking of a responsive design, it is necessary a new review for the
implementation of this aspect, especially considering the diversity of artifacts interac-
tion (Screen, Tablet, Mobile).

Although the other three items that gathered opinions to validate the pedagogical as-
pect, factor related teaching materials received favorable opinions —on average 80%—
the students expressed in item response unstructured confirm the need to review cer-
tain aspects of interface design; some of the comments were not fully responsive, on
small monitors the cards do not appear completely, it is preferable to have pop-up mes-
sages instead of using a section of the screen.

As for the second objective, 90% said they did not use a defined strategy for identifying
couples, rather unveiled cards trying to identify couples via trial and error. As for the
remaining 10% said that they tried to discard the erroneous couples, memorizing the
positions of the already disclosed. Interestingly expressed was about the order in which
the students selected the cards, 15% said that first unveiled a concept card and then a
description card.

6.	 Conclusions

We have proposed the use of a Ludic Virtual Learning Environment for the exercise of
concepts related to the area of Software Engineering. Two prototypes were developed
and MemoSoft 2.0 was subjected to a test pilot with students in an evaluation activity
to validate empirically the features and rules set out therein. The opinions related as-
pects of usability and instruction were generally positive; however, opinions linked with
teaching materials, induce us to review the features of the environment. Regarding the
strategies used by students during the game individually, no specific patterns observed.
In the other hand, the use of MemosSoft as a tool to assist students in their learning
process, apparently it has resulted, with the information obtained in the pilot test, a sui-
table option that can be incorporated into learning activities, both presential modality
as in mixed modality. With the above results, it is possible to direct our efforts to modify
certain aspects of the interface and enable the collective game, to analyze strategies in
competition scenarios with peers.

Lessons learned with developing the proposal allow us to suggest that its use can be
extended not only to activities for the review of concepts, but also evaluation activities.

408 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

7.	 Acknowledgements

Authors acknowledge the support received from the administration of the Faculty of
Mathematics (UADY, for its acronym in Spanish) for the financial support through the
project PROFOCIE 2015-31-12 for reporting of progress in CONISOFT 2016 held in the city
of Puebla. Also, special thanks to the students: Andre Chay, Edwin Gonzalez, Jonathan
Gonzalez and Eduardo Rodriguez, for their support in the programming —as part of its
project in the course Engineering Web— of the second prototype for MemoSoft. Finally,
we thank the group of students who were studying the subject Software Requirements
Development, the valuable feedback we received regarding the Ludic VLE as part of the
process of empirical validation.

8.	 References

[1] 	 W. Clancey and E. Soloway. “Artificial Intelligence and Learning Environments” A
Special Issue of Artificial Intelligence: An International Journal. 1990.

[2] 	 P. Dillenbourg, “Virtual Learning Environments” Workshop on Virtual Learning Envi-
ronments, 2000.

[3] 	 D. Dicheva, C. Dichev, G. Agre and G. Angelova, “Gamification in Education: A Syste-
matic Mapping Study”. Educational Technology & Society, 18 (3), 2015

[4] 	 D. Johnson and R. Johnson, “Learning together and alone: Cooperative, Competitive,
and Individualistic learning,” Englewood Cliffs, NJ: Prentice Hall. 1994.

[5] 	 G. Kearsley, “Artificial Intelligence & Instruction. Applications and Methods” Addi-
son-Wesley, 1987.

[6]	 R. Aguilar, y J. Diaz. “La Ingeniería de Software en México: hacia la consolidación del
primer programa de licenciatura”. Revista de Tecnología Educativa. Vol 2. Num. 2. Pp.
6-17. 2015.

[7] 	 P. Bourque and R. Fairley. “Guide to the Software Engineering Body of Knowledge
(SWEBOK V3.0)”, IEEE Computer Society, 2014.

[8] 	 ACM & IEEE-CS. “Software Engineering 2004: Curriculum Guidelines for Undergra-
duate Degree Programs in Software Engineering (SE2014)”, 2015.

[9] 	 A., García, F. Álvarez, y M. Sánchez, M. (2015). Modelos Curriculares del Nivel Superior
de Informática y Computación. Pearson.

[10] 	R. Aguilar, I. Aké, J. Ucán, y A. Aguileta. “Desarrollando Entornos de Aprendizaje con
UWE: Una aplicación lúdica para la ejercitación de conceptos en Ingeniería de Soft-
ware”. Memorias del 4to. Congreso Internacional de Investigación e Innovación en
Ingeniería de Software. pp.11-116. 2016.

409CHAPTER # 22 - AN INSTRUCTIONAL PROPOSAL FOR STUDY OF CONCEPTS ON SOFTWARE ENGINEERING ASSISTED BY LUDIC VIRTUAL LEARNING ENVIRONMENTS

[11] 	 J. Voutilainen, J. Salonen, & T. Mikkonen. “On the design of a responsive user interface
for a multi-device web service”. Proceedings of the Second ACM International Confe-
rence on Mobile Software Engineering and Systems (pp. 60-63). IEEE Press. 2015.

[12] 	 I. Jacobson, P. Wei Ng, P. McMahom, I. Spence, and & S. Lidman, “The Essence of Soft-
ware Engineering. Applying the SEMAT Kernel,”. Addison-Wesley, 2013.

[13] 	 M. Gaedke and G. Gräf, “Development and Evolution of Web-Applications using the
WebComposition Process Model,” 2000.

[14] 	 N. Koch, A. Knapp, G. Zhang, and H. Baumeister, “Uml-Based Web Engineering,” in
Web Engineering: Modelling and Implementing Web Applications SE - 7, G. Rossi, O.
Pastor, D. Schwabe, and L. Olsina, Eds. Springer London, 2008, pp. 157–191.

[15] 	 L. Balbin, “Beginning Ajax with PHP: From Novice to Professional,” Apress, 2006.
[16] 	 jQuery user interface. http://jqueryui.com/. Accedido en enero del 2012.
[17] 	 A. Galvis. “Ingeniería de Software Educativo”. Ediciones Uniandes, 1992.
[18] 	 P. Marqués. “Software Educativo. Guía de Uso y Metodología”. Estel, 1995.
[19] 	F. Llorens, F. Gallego, C. Villagrá, P. Compañ, R. Satorre, R. Molina. “Gamificación del

Proceso de Aprendizaje: Lecciones Aprendidas” VAEP-RITA Vol. 4, Núm. 1, pp. 25-32.
2016.

410

1.	 Introduction

Augmented Reality is an area that combines real elements with virtual elements in
real time, where there is no substitution, but a complement of information. The addi-
tional information is images, 3D objects, videos, sounds and texts. Augmented reality
is a relatively new area, dating from about the nineties [1, 2]. On the other hand, it is
said that a museum is a public or private, permanent institution, with or without profit,
serving the society, which acquires, conserves, researches, communicates and exposes
or exhibits for purposes of study, education and delight art collections, scientific, etc.,
always with a cultural value, according to the International Council of Museums [3]. An
excellent area that can be used favorably is the Augmented Reality that combines real
aspects, such as pieces that has a museum, but also considers virtual aspects, which
can be incorporated to provide real-time information on mobile devices of the users,
such as video, audio descriptions, modeled three-dimensional, photo galleries, etc.
Additional information allows introducing some level of interaction, without damaging
the pieces. Currently, you can find a variety of projects that use digital technology in
different fields, such as medicine, architecture, culture, videogames, etc. A clear exam-
ple is the Casa Carranza museum [4], which includes 360 degrees views. The National
Museum of Popular Culture [5] and the Louvre Museum [6] has online tours, the castle
of Alcaudete and the Museum of Andalusia [7] have a circular structure with markers
of Augmented Reality. Some museums that have incorporated Augmented Reality in
mobile devices are the Museum of Modern Art and New York Museum. The Museum of
London has an App where old photographs are merges with the current view. Finally,

Chapter # 23
Augmented Reality Applied
in the Museum of Memory
of Tlaxcala

Marva-Angélica Mora-Lumbreras, Sergio Molina-Guarneros, Carolina-Rocío Sánchez-Pérez
Facultad de Ciencias Básicas, Ingeniería y Tecnología
Universidad Autónoma de Tlaxcala
Calzada Apizaquito s/n, CP 90401
Tlaxcala, México.
{marva.mora, sergio.molina.guarneros, krlinasp}@gmail.com

411CHAPTER # 23 - AUGMENTED REALITY APPLIED IN THE MUSEUM OF MEMORY OF TLAXCALA

we can mention the recreation of the Berlin Wall Museum [8], which results attractive
in the tourism sector.

2.	 Augmented Reality in Mobile Devices

In recent years, the technological evolution is allowing an interesting transition in all
areas; with the introduction of smart devices, the researchers have a great opportunity
of developing extraordinary projects. Exploiting the mobile devices characteristics y the
possibility of introducing Augmented Reality technology, this project presents a focu-
sed on a museum with the objective of improving the interaction, giving dynamism and
additional information.

Augmented reality combines real information with virtual, creating a mixed reality in
real time, therefore, adds a virtual synthetic part to reality, it considers geographical
the user’s position, markers, in addition, the mobile devices access online and stored
information [9].

3.	 Generations of the museums

There are five generations of museums [10]:

•• The first generation of museums is characterized as scientific and technical, it pre-
sents the classic concept of storing precious pieces, rare items, and masterpieces
of nature or man.

•• The second generation includes technological museums, based on the Industrial
Revolution and the artisan classes.

•• The third generation introduces the interaction, centering in the experienced visitor.

•• The fourth generation can be identified as incorporating scientific theme parks. Its
most prominent feature is the combination of information, education and enter-
tainment in a product.

•• Finally, the fifth generation uses the media, audiovisual show, special effects, su-
rround sound techniques, virtual reality spaces resulting in scientific communica-
tion and education. Likewise, technology has led to the generation of fully virtual
museums, where the physical museum is not relevant.

The memorial museum of Tlaxcala corresponds to the museums of the second genera-
tion, it has pieces of the founding of New Spain, agriculture tools in the sixteenth century

412 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

until the Baroque stage, however, by incorporating Augmented Reality, it museum could
be considered of the third generation.

4.	 Methodology

In order to develop a software project, it is important to establish the methodology
to be used and have the necessary permits from the relevant institutions. The deve-
lopment of a project Augmented Reality in museums includes people specialized in
different areas, as anthropologists, historians, designers, programmers, etc. Specifi-
cally, this article focuses on software development. Although we searched different
methodologies for this project, we decided to generate one, in Figure 1. The methodo-
logy defined for the project.

Figure 1. Design Methodology for Implementation Augmented Reality focused Historical Museums

Detailing the methodology:

1.	 Analysis of requirements consider:

»» Specific goals, in this case, selecting areas of the museum, key parts and lite-
rature to supplement the original information.

»» Techniques to be used as Mobile Augmented Reality or Desktop
»» Determine the use of markers or positions
»» Definition of hardware of development and end-user
»» Definition of software of development

413CHAPTER # 23 - AUGMENTED REALITY APPLIED IN THE MUSEUM OF MEMORY OF TLAXCALA

»» Define principles of usability considering interaction, presentation, navigation,
panoramic, sound, guidance and help.

2.	 Design and Modeled of software: UML, 3D objects, as well as taking into considera-
tion usability aspects.

3.	 Implement

4.	 Finally, like all quality software is important to realize different tests as unitary,
of integration, functional, of usability. Also is necessary correct each problem
detected.

5.	 Selection of material to generate
Augmented Reality

The Museum of Memory of Tlaxcala covers parts of the foundation of New Spain in the
sixteenth century until the Baroque stage. This museum is divided into different thema-
tic units:

•• The republic of naturals

•• The material world

•• The economic life

•• Devotions

•• Memory

•• The diaspora

•• The heritage

Of this thematic units, we decided to work in all sections, but only 20 representative pie-
ces of the museum, covering the following categories:

•• Religious pieces

•• Photo galleries of ranches

•• Photo galleries of codices

•• Tools of Agriculture

These 20 pieces were used for producing Augmented Reality, supplement the traditional
information with technology. Figure 2 shows the modules of the project.

414 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Figure 2. Modules of Augmented Reality focused on the Museum of Memory of Tlaxcala

6.	 Technical Specifications of Development

For the Augmented Reality project at the Museum of Memory of Tlaxcala was chosen as te-
chnical the Mobile Augmented Reality using markers, because the markers can be placed
in key areas for an explanation in real time using mobile devices. The development was ca-
rried out in a laboratory of the Faculty of Basic Sciences, Engineering and Technology of the
Autonomous University of Tlaxcala, which is equipped with computers for gamers Asus, con
VCD ASUS Nvidia GTX 550 T1GB DDR5. While on the side of development, the software used is:

•• The 3D graphics engine, created by Unity Technologies, founded in 2004 by David
Helgason, Nicholas Francis and Joachim Ante in Copenhagen, Denmark [11]. 2. Fra-
meMarker of Vuforia SDK developed by Qualcomm, a US company founded in 1985,
according to Qualcomm Inc. Annual Report [12].

•• Android developed for Android Inc., a company of software located in Palo Alto [13].

For the project had a high level of quality, design using the following usability principles [14]:

•• Interaction is achieved by incorporating the use of markers, showing the user times
and situations with high clarity on their mobile devices, with immediate actions
executed by the user, such as the rotations and translations of the mobiles devices.

415CHAPTER # 23 - AUGMENTED REALITY APPLIED IN THE MUSEUM OF MEMORY OF TLAXCALA

•• Presentation. This project is easy to use, features a logo related to the museum, the
user must only place the mobile device with the application running in front of a
marker and the information is displayed immediately.

•• System Navegación.-This project has a set of markers belonging to different sec-
tions of the museum, as some markers lead to photo galleries, there is a continue
navigation system.

•• Overview.- The 3D information is generated depending on the user position and
movement, the visibility of three-dimensional objects change according to the po-
sition of the device, and orientation, but also it is possible rotate the 3D object
using the touchscreen system, it also manages the concept of displaying multiple
objects simultaneously.

•• Sound. It is necessary synchronizes view and sound. For example, on using videos.

•• Guidance and assistance. The project includes help for the novice user.

7.	 Museum of Memory of Tlaxcala with
Augmented Reality

The project Museum of Memory of Tlaxcala with Augmented Reality is created according
to the flow shown in Figure 3. We choose the real objects, which were captured with a
camera for being modeled in 3D, the augmented reality is generated with the different
3D objects and markers, producing then the user can see the 3D models displayed on
the mobile device.

Figure 3. Flow of the project

416 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

The interface is intuitive for any type of person, the buttons representatives actions, the
project includes photo galleries, videos, texts and descriptive audio, 3D modeling, which
allows visitors to have an interactive experience.

Specifically, this project includes a photo gallery and 3D-models of Ocotlan, different ga-
lleries of ranges such as Santa Agueda, Soltepec, San Pedro and San Diego Tenexac. Also,
photo Galleries of the Codex of Huamantla and canvas of Tepeticpac agricultural tools
modeladed in 3D. The implementation was carried out in one year.

Although the project includes several sections, we choose the San Pedro Tenexac ranges for
this chapter, due to its significance. This ranch is located in Terrenate, Tlaxcala, the National
Institute of Anthropology and History (INAH) declared Historic Monument of the Nation for
their conservation in 1982. The gallery included photos of the San Pedro Tenexac ranch and
details of the ranch. The user interaction is through of buttons that controlled the pass of
the images on the screen. Figures 4 and 5 show the project operation. The information in
Augmented Reality was obtained of historians, archeologists and references of this topic.

Figure 4. Textual description of the San Pedro Tenexac Ranch.

Figure 5. Tenexac Ranch.

417CHAPTER # 23 - AUGMENTED REALITY APPLIED IN THE MUSEUM OF MEMORY OF TLAXCALA

Figure 6 shows how the application runs with some of the 3D models of agricultural tools

Figure 6. 3D models of agricultural tools.

The Basilica of Ocotlan is one of the main themes of the museum, so it is important to
show the visitor how impressive the place, so we decided to show a 3D model.

Figure 7. 3D models of agricultural tools.

8.	 Usability Test

The case study was tested by unit, integration, functional and usability tests. The usabi-
lity tests were done with users of museum visitors. After users installed the application
they used to display the augmented information, then they answered two short surveys,
the first focused on usability, the second for evaluating the selection of content and the
user satisfaction. The tests were done to a group of 20 museum visitors with a variable
range in age from 15 until 30 years; every visitor installed and used the application on a
mobile device with Android. The application was provided by the team.

Usability Survey

1.	 Was the project easy to install?

2.	 Was the project easy to explore?

3.	 Were the galleries easy to explore?

4.	 Is the user interface easy to understand?

418 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Selection of content and user satisfaction.

1.	 Is the relevant information?

2.	 Does the additional information match with the real?

3.	 Is an innovative project?

4.	 Do you recommend the project?

Figures 8 and 9 present the results. It can be analyzed by the survey results, the project
is simple to install, easily explore and easy to understand. By project content, users find
it full, and most of them recommend it.

Figure 8. Results of the Usability

Figure 9. Results of the Content and User Satisfaction.

Visitors expressed that the inclusion of Augmented Reality is ideal, produce a good satis-
faction in the visit of the museum. It is noteworthy that the application is not currently

419CHAPTER # 23 - AUGMENTED REALITY APPLIED IN THE MUSEUM OF MEMORY OF TLAXCALA

available on any website or Google Play, due to it is in the final stage of testing. On the
other hand, the university has massive visits of students and teachers from different
schools and universities, in these visits, we have presented the project with 300 invited
and 100 students of our university, giving a total of 400 testing within the University, all
tests with positive comments.

9.	 Discussion

This chapter presents a study case for incorporating Augmented Reality at the Museum
of Memory of Tlaxcala. For the development of this project, the cascade methodology
was adapted. In this, we have incorporated key aspects for using Augmented Reality in
museums of the first generation, we consider that with technology it museum could be
considered of the third generation.

We observed during testing emotion and good satisfaction of the visitors, the interaction
and participation justify suitability of this study, we could observe this as part of the
tests that were performed. At the same time, it is important to note that all visitors saw
with pleasure and satisfaction the incorporation of Augmented Reality in the traditional
route, commented at the end of the evaluations that incorporate Augmented Reality in
museums increase the attention, is useful and allows a degree of dynamism in an area
where restrictions are very strong. Similarly, we observed in the massive evidence that
the most students have mobile devices with Android.

On the other hand, if we compare the case study described here with some of the mu-
seums using technology, for example, Carranza House Museum [4] which contains 360
degrees views, photo galleries, online activities and Augmented Reality our project is
different because it focuses on the use of virtual reality during the actual tour of the
visitor, serving as a complement to the information shown, for example, the National
museum of Popular Culture uses virtual tours online [5], which It makes it different to
the here presented. We believe that our project enriches the information with videos,
galleries, 3D objects as the Alcaudete Castle and the Museum of Andalusia [7] that use
markers.

10.	 Conclusions

This project is evolving and was published in the fourth Edition of CONISOFT [14].

The technology is giving contributions in many areas, benefiting people to use in edu-
cation and culture, enabling citizens to be better informed. However, even in today’s

420 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

museums of Mexico, this effort is still inadequate, much work is required to improve
the goals that technology imposes on us. This article presents a case study of Aug-
mented Reality for the Museum of Memory of Tlaxcala, for the development of this
project; a methodology that considers the main aspects to achieve quality software
was adapted and presented. During testing case study could be seen that Augmented
Reality is an area that handles interaction with visitors, this technology can comple-
ment a traditional exhibition and museum pieces are respected. Finally, noting that
the technology is getting involved in all areas of the life, we can enjoy our culture res-
pecting the history.

11.	 References

[1] 	 Barfield W, Caudell Thomas, Fundamentals of Wearable Computers and Augmented
Reality, CRC Press. 2001

[2] 	 Tony Mullen, Prototyping Augmented Reality, JohnWiley & Sons, Inc. ISBN: 978-1-118-
03663-1, 2011

[3] 	 Isabel R Villena, Definitions of museums. University of Castilla-La Mancha, 2009.
[4] 	 Museo Casa Carranza, conaculta. http: //museocasadecarranza.gob.mx/multime-

dia/, document retrieval date: January 8, 2016.
[5] 	 National Museum of Popular Culture. Moon metaphors: tradition and modernity in

Indian art, Museo Nacional de Culturas Populares. http: //museoculturaspopulares.
gob.mx/multimedia/metáforas, document retrieval date: January 8, 2016.

[6] 	 Miyashita T, Meier P, Tachikawa T, Orlic S, Eble T, Scholz V, GAPEL A, Gerl O, Arnaudov
S, Lieberknecht S, An Augmented Reality museum guide, 7th IEEE / ACM International
Symposium on Mixed and Augmented Reality, 978-1-4244-2840-3, 2008, pp 103-106.

[7] 	 Ruíz Torres, Augmented Reality and Museums, Icon Magazine 14, 1697-8293, 2011, pp.
212-226.

[8] 	 Dolores Galindo, museums Augmented Reality, Social Museum, in July 2012
[9] 	 Fombona Cadavieco Javier Pascual Maria Angeles Sevillano, Madeira Ferreira Ama-

dor, Augmented reality, an evolution of the application of mobile devices, Pixel-Bit.
Journal of Media and Education, (41): 197-210, 2012

[10] 	 E Antonio Ten Ros. LOS scientific-technological. MUSEUMS A classification test for
generations. IEDHC (University of Valencia-CSIC)

[11] 	 Sue Blackman (2013), Beginning 3D Game Development with Unity 4: All-in-one,
multi-platform game development, Ed TIA (Technology in Action).

[12] 	 Qualcomm, Inc. Annual Report 2013. Qualcomm Incorporated. Date Document Reco-
very November 18, 2015.

[13] 	 Hébuterne Sylvain, Pérochon Sébastien, Android Application Development Guide
for Smartphones and Tablets (2nd edition), Editions ENI, 2014. [14] Pérez Yulian-

421CHAPTER # 23 - AUGMENTED REALITY APPLIED IN THE MUSEUM OF MEMORY OF TLAXCALA

ne, Castro Wilfreso, Garces Arianna, Usability Principles for virtual reality products,
Spanish Academic Publishing, 2012.

[14] 	 Mora-Lumbreras Marva-Angélica, Molina-Guarneros Sergio, Sánchez-Pérez Caroli-
na-Rocío, Augmented Reality: Case Study of the Museum of Memory of Tlaxcala, 4to.
International Conference on Research and Innovation in Software Engineering 2016,
CONISOFT’16.

422

1.	 Introduction

A serious, educative, or didactic game is one in which some type of knowledge is ob-
tained through playing [1], facilitating the teaching and learning process [2] to solve
problems or social challenges related to a subject [3]. Zyda [4] defines serious games
as a “mental test, run through a computer that uses entertainment as a government or
corporative training with educative, sanitary, public policy, and strategy communication
goals”.

In addition, a serious game not only has an educational or serious purpose, but it
also contains fun-focused elements [5]. Most important objectives in serious games
are [6]:

1.	 Student motivation

2.	 Learning retention increase

3.	 Learning transfer improvement

4.	 Immediate feedback

5.	 Recognition obtaining

These objectives become attractive to increase and maintain the user attention, and
because of these, serious games, are being described by some analysts as the next wave

Chapter # 24
Promoting Software Engineering
Concepts to Children through a
Serious Game

Selene Ramírez-Rosales, Sodel Vázquez-Reyes, Juan Luis Villa-Cisneros, María de León-Sigg
Autonomous University of Zacatecas, Programa de Ingeniería de Software
Ciudad Universitaria Siglo XXI, Edificio de Ingeniería de Software Ingeniería en Computación
C.P. 98160, Zacatecas, Zac., México
selenereamirezrosales@gmail.com, vazquezs@uaz.edu.mx, jlvilla@uaz.edu.mx, mleonsigg@
uaz.edu.mx

423CHAPTER # 24 - PROMOTING SOFTWARE ENGINEERING CONCEPTS TO CHILDREN THROUGH A SERIOUS GAME

of technology-mediated learning [7]. The uses for serious games include emergency ser-
vices training, military training, corporate education, and even health care, making them
useful without regard of objectives and level of the audience [7].

On the other hand, early learning of programming skills and technology-related sub-
jects, improve school performance in other disciplines as mathematics and languages
[8]. Due to this, is important to promote Software Engineering (SE) learning, as well as all
of the software production aspects [9], including Object Oriented Programming (OOP),
one of the most used programming paradigms [10]. Therefore, the goal intended with
the research presented in this chapter was to develop a serious game to promote the
interest about SE and OOP concepts to children older than eight years old, who use An-
droid devices.

This chapter is organized as follows: In section two, is presented a brief review of pro-
jects to teach programming and SE concepts. The problem is described in section three;
the serious game proposal is presented in section four. Later, section five explains how
the serious game was developed. In section six is described the experimentation. The re-
sults of experiments are presented in section seven, and, finally, conclusions and future
work are presented in section eight.

2.	 Related Work

Video games have been in our life for more than 50 years, becoming quickly in one of
the most important, profitable and influential ways of entertainment in the United Sta-
tes and all over the world [11]. The term “serious game” was not used until 2002, when it
was used for the first time during the launching of “America’s Army”, a military training
and combat mission simulator, created by the American army and distributed for free
over the Internet [12].

There are different serious projects to teach programming, oriented to children and
young adults. Each project has characteristic properties that make them unique in their
structure, rules, mechanisms, costs, platforms and potential user’s ages. Among the
most important applications launched in recent years are Game Maker, Code.org, My Ro-
bot Friend, Scratch, Scratch JR, Cargo Bot, Code Hour, Code Monkey, Kodable Class, Tynker,
Daisy the Dinosaur, Hopscotch, Lightbot, and Move the Turtle [13].

Those applications are oriented mainly to children between 5 and 17 years old, with ac-
tivities according to those ages. Therefore, each one of those applications uses different
styles and mechanics: drag and drop, puzzles, commands, challenges and tutorials.

424 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Similarly, there are projects that support the learning of SE concepts, mainly focused on
young adults, primarily university students. Those projects are usually simulators and
products in a stand-alone platform. Notable examples are SimSE, SESAM, OSS, SimVBSE
and The Incredible Manager [14, 15, 16, and 17].

In addition, most applications and projects mentioned before are free and/or accept
donations to continue their development, and many are mobile and tablet applications.
The most used operating system for them is iOS, even when Android is used in more
than 50% of other operating systems.

However, even when those projects and efforts facilitate the promotion of SE and OOP,
none of them groups together both areas of interest. Existent projects are simulations
and practice games already in use in military, schools, and industry for learning. Those
mainly facilitate the SE processes, allow virtual participation in realistic processes [11]

3.	 Problem

In a few years, the technological environment will be part of our life, and the knowledge
about the use, functioning, development and maintenance of Information and Commu-
nication Technologies (ICT) will be essential [18]. However, elementary, middle and high
school students and teachers, seem not to know about it, generating difficulties in the
technological advance of society and economy [19].

Demand for programming knowledge is increasing, and next generations should know
about it. Software development is going to be one of the most important fields of em-
ployment in the next ten years: there will be 1.4 million employments and only 400 thou-
sand graduated professionals in the area [20].

Unfortunately, there are false stereotypes and myths about programmers and soft-
ware engineers that have created the image of people who dedicate to do intimida-
ting, challenging or boring activities [21]. Those false beliefs have affected children
and young attitudes towards both subjects and have made difficult their training in
SE and OOP.

4.	 Proposal

Currently, there are several projects promoting topics of SE and programming, but none
of them is doing an integration of SE and OOP, considering as their specific audience
scholar age children. Due to this, a serious game was developed to promote the interest

425CHAPTER # 24 - PROMOTING SOFTWARE ENGINEERING CONCEPTS TO CHILDREN THROUGH A SERIOUS GAME

about SE and OOP for children older than eight years old [18]. The game works in Android
because it is the most common platform for mobile devices.

Aspects covered in the serious game included how to solve programming problems [9],
doing emphasis in the order:

1.	 Problem analysis

2.	 Requirements specification

3.	 Design

4.	 Implementation

5.	 Testing

6.	 Documenting

7.	 Maintenance

OOP, as one of the most used programming paradigms because of its simplicity to repre-
sent the way we perceive our environment, and its reusability, flexibility, scalability and
understandability. OOP is divided into four main concepts that should be easily concep-
tualized by OOP paradigm users [10]:

1.	 Class: a data type that contains a single structure attribute and methods.

2.	 Object: a class instance

3.	 Attributes: class characteristics

4.	 Methods: class functions

OOP has another group of fundamental properties [10]:

1.	 Inheritance: objects are created from existent ones.

2.	 Polymorphism: objects respond in a different way to the same message.

3.	 Abstraction: focus on object’s most important characteristics or facts.

4.	 Encapsulation: all needed elements are integrated into one entity.

5.	 Information hiding allows object attributes isolation or protection from the en-
vironment, in such a way that they cannot be modified in an arbitrary manner.

426 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

6.	 Modularity divides a large application into small parts, independent among
them.

Other essential OOP concepts taken into account for the development of the serious
game were:

1.	 Algorithms: a series of steps done to obtain a result from an input [22].

2.	 Conditional structures: if, if-else and switch

3.	 Iterative structures: while, do-while and for

4.	 Arrangements: data or element set of the same type and with the same identi-
fier. Every element of the same arrangement is identified with the same name
and the position or place it is located [10].

To conceptualize previous mentioned knowledge areas into a serious game, some ele-
ments and attributes should be considered [7, 23, and 24]:

Dynamics: elements that give game meaning. These dynamics are general aspects, ob-
jectives, effects, desires, and motivations (for example restrictions, emotions, narrative,
progression, and relations).

Mechanics: this type of elements allows dynamics and game evolution. These are basic
actions to motivate the user (for example challenges, opportunities, competition, coope-
ration, feedback, reward, victory states).

Components: this type of elements allows implementing game mechanics and dynamics
(for example achievements, avatars, medals, content unblocking, scoreboards, levels,
points, gifts, quests).

Based on game characteristics and objectives, the project was named Software KIDS. In
Figure 1a y 1b, is shown logo, the name of the project and the characters that included
in the serious game.

Figure 1a. Serious game logo, the name and characters

427CHAPTER # 24 - PROMOTING SOFTWARE ENGINEERING CONCEPTS TO CHILDREN THROUGH A SERIOUS GAME

Figure 1b. Serious game logo, the name and characters

5.	 Development

As described in the previous section, Software KIDS is a serious game to promote SE and
OOP with an Android device.

As software development is not an easy activity, numerous methodological propo-
sals exist to solve different types of problems found. Because there is not a specific
methodology to solve each of them, it is necessary to look for the most appropriate
according to the characteristics of the problem [25]. Software industry frequently uses
agile methodologies. Agile methodologies are based on four principles [25]:

1.	 Individuals and interactions over processes and tools.

2.	 Working software over comprehensive documentation.

3.	 Customer collaboration over contract negotiation.

4.	 Responding to change over following a plan.

One methodology that accomplishes such principles is SCRUMBAM.

SCRUMBAN is the combination of the best features and characteristics of agile methodo-
logy Scrum and Kanban. This is a combination of teamwork and working time optimiza-
tion work [26]. The resulting combination provides the freedom to create unique solu-
tions [26]. The details of both methodologies are shown in Table 1.

Table 1. Description of scrum and Kanban

Feature SCRUM Kanban

Time Established time Work In Progress

Iterations Yes No

This table continues on the following page ––––––>

428 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Backlogs Sprint Backlog, Product Backlog Backlog with limits

Roles Yes No

Restrictive 50% 0%

Changes No Yes

Estimations Yes No

Ceremonies yes No

SCRUMBAN was chosen because Software Kids development needed a way to maintain
flexibility in project management. This was required because serious game development
needs several iterations due to frequent changes [3]. Besides, there was no specific time
limit and the working team was small.

SCRUMBAM has the advantage over SCRUM because is not a restrictive methodolo-
gy, allowing a better designation of roles and an improved arrangement of planning
meetings.

During the analysis phase of development, there were selected the topics of OOP and
SE. For SE, topics selected were problem analysis, steps to solve programming problems,
software processes, requirements and testing. Topics selected for OOP were algorithms,
control flow and arrays.

With the selected information from the main topics, it was designed the game structure,
where the steps to solve programming problems are represented each one by level in
the game. The structure considered levels that are won as the player plays the game.
For example, characteristics and properties of OOP, objects, actions and attributes, flow-
charts and arrays, represent a level. This way, the game is divided into ten levels, each
of them allowing the player to learn about the steps to solve programming problems as
well as concepts of OOP.

When the structure of the serious game was designed, mockups were created to help
conceptualize each level, as well as the elements contained in the serious game. The
mockups were created using Balsamiq Mockups tool. At the same time, there were desig-
ned the image of the game, buttons, characters, information, etc. In Figure 2, are shown
level one and level five mockups done during initial sprints.

Every game should consider some important elements, such as engagement, collabora-
tion, participation, competition and psychological elements as motivation, ability, and
trigger. With these elements in balance, the game is more attractive for the user [24].

429CHAPTER # 24 - PROMOTING SOFTWARE ENGINEERING CONCEPTS TO CHILDREN THROUGH A SERIOUS GAME

Software KIDS uses different mechanics, dynamics and components, without losing
simplicity.

Figure 2. Sketches of levels one and five

Due to this, the serious game is mainly driven by drag-and-drop and select-true-or-
false activities. This choice was chosen because they are very common in reviewed
games, and allows to provide automatic and immediate feedback. These operating
models are similar to puzzle games, this way the user is feeling that is playing more
than learning.

One of the most important elements that were added is random triggers like bombs,
stopwatch, non-stop correct or mistakes answers that provide the opportunity to intro-
duce some changes and add or subtract points and/or time, to motivate or help player
[27]. Some of the technologies and resources used to incorporate such elements were:

•• UNITY: a game engine for game production.

•• Adobe Illustrator: a vector drawing software.

•• freepik.es: search engine of free vector designs

•• soundbible.com: a search engine for free sounds.

•• Balsamiq Mockup: wireframing software to make Mockups.

430 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Software KIDS was developed in sprints. Each sprint was planned considering the ele-
ments to be included in it. Once each element was included, it was reviewed against
the initial sprint planning. If the element did not satisfy initial objectives, a new plan to
develop the element was created.

Development started with sprint 0. It last two days and its objective were to learn how to
use UNITY. The sprints order was a team decision, and their duration was not fixed. Some
of the sprints lasted one day because there due to code and elements reusability. The
complete 27 sprints and their duration is shown in Table 2.

Table 2. SOFTWAREKIDS sprint description

Sprint ID Sprint name Duration (days) Description
0 Training tools 2 Training with the main tools

1 Game analysis 3
Observation, research and analysis of
several games oriented to programming
and software engineering

2 Sketches creation 2 Each level sketch creation
3 Game identity creation 3 Decision making in game name and image
4 Level 2 3 Level elements and structure realization
5 Level 3 2 Level elements and structure realization
6 Level 5 2 Level elements and structure realization
7 Level 6 2 Level elements and structure realization
8 Level 4 2 Level elements and structure realization
9 Level 8 2 Level elements and structure realization
10 Level 9 2 Level elements and structure realization
11 Level 7 2 Level elements and structure realization
12 Level 10 2 Level elements and structure realization
13 Level 1 2 Level elements and structure realization
14 Level 1 1 Level elements and structure realization
15 Level 1 1 Level elements and structure realization
16 Level 4 2 Level elements and structure realization
17 Level 4 1 Level elements and structure realization
18 Level 5 1 Level elements and structure realization
19 Audio 2 Audio level choice
20 Image 1 Image level choice
21 Help section 2 Help section for all levels realization

22 Level section 2 Level access menu realization, attempt and
time record realization

23 Informative sections 2 Informative section, application contact
and social network realization

This table continues on the following page ––––––>

431CHAPTER # 24 - PROMOTING SOFTWARE ENGINEERING CONCEPTS TO CHILDREN THROUGH A SERIOUS GAME

Sprint ID Sprint name Duration (days) Description
24 Integration 2 Section integration

25 Information gathering 3 Research, collection and creation of
information used during games

26 Image 2 Each level image choice
27 Testing 1 Level and integration tests realization

Several sprints were oriented to the realization of graphic and audio elements to give
the player immediate feedback. These elements represent an important factor in game
use. A section to solve questions in each level was added because in reviewed games it
is noticeable the lack of help and explanation about subjects. This lack creates frustra-
tion, desperation or boredom in players.

Other added section was a level map, presented in Figure 3, which shows how the player
is progressing in the game. In the level map, the player can watch his/her best record on
attempts, time, correct answers, and allowed mistakes, motivating the player’s improve-
ment on points account.

Each level is limited in time to a range between 60 and 90 seconds, depending on the
played level.

To progress between levels is needed to complete all required correct answers. When the
player does not achieve all correct answers on time or has more mistakes than allowed,
he or she could start again. The details of each level are shown in Table 3.

Figure 3. Level map of Software KIDS

432 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Table 3. Description of operation of software kids

Level
ID

Level
name Operation Time

(sec) Random trigger Required
points

Allowed
mistakes

1 Problem
solution

User will have to
identify the adequate
solution to a
presented problem

60

When the user gets
five non-stop correct
answers, five more
points are added to
the player account.

20 10

2 Require-
ments

User will have
to identify if
requirement is an
action or an attribute

60

There are two random
triggers: a bomb
which subtracts five
points to player
account and a
stopwatch which halts
time for five seconds

20 10

3 Analysis

User will have to
follow clues to create
selected lifecycle
form to visualize it
correctly

60 None 20 10

4 Design
User will have to
order every activity to
be done to correctly
solve a problem

90

When user completes
the task without
mistakes, two points
are added to player
account

15 10

5
Objects
and
methods

User will have to
identify among
several words if the
term is an object, a
method or an activity

60

When user has five
non-stop correct
answers, two points
are added to player
account

20 10

6
Properties
and
charac-
teristics

User will have to
identify if OOP
properties examples
are true or false

60
When user has five
correct answers, five
points are added to
player account

20 10

7 Control
flow

User will have
to select among
several structures,
conditional or
iterative, according to
a given problem and
its possible solution

90 None 15 10

8 Arrange-
ments

User will have to
select the indicated
cell

60

When user makes
three non-stop
mistakes, three points
are subtracted from
player account

20 5

This table continues on the following page ––––––>

433CHAPTER # 24 - PROMOTING SOFTWARE ENGINEERING CONCEPTS TO CHILDREN THROUGH A SERIOUS GAME

Level
ID

Level
name Operation Time

(sec) Random trigger Required
points

Allowed
mistakes

9 Testing
User will have to
identify if shown test
is true or false

60
When user has five
non-stop correct
answers, time halts
for five seconds

20 10

10
Mainte-
nance and
documen-
tation

User will have to
select letters and
put them on correct
position to complete
a word

60

When user completes
the word without
mistakes, five points
are added to player
account, and when
user skips a word, two
points are subtracted
from player account

20 10

In Figure 4, is shown the final image of these levels. Every figure is in Spanish because is
the game native language.

Figure 4. Final evolution of levels one and five

434 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Software KIDS was added to GooglePlay as a free download on the account of the Auto-
nomous University of Zacatecas, to facilitate the installation process on mobile devices
during the test and debug stage.

Test and debug stage was done with the help of ten students enrolled in the OOP course
of the third semester of Computer Engineering Program, in the Autonomous University
of Zacatecas. These students completed all levels and graded all of them. They also gave
comments and suggestions, especially related with points, time, instructions and speed
of the game, as well with some defects on level performance. In Figure 5, are shown the
scores obtained in this evaluation.

Figure 5. Student evaluation

According to Figure 5, the lowest level was level two with a grade of 6.5/10. This level was
modified, as well as levels ten and four. Modifications done were related with simplicity,
speed, and difficulty. Some of the comments given to game were:

1.	 “The games are very interesting to learn new concepts and review the basics”.

2.	 “It is entertaining. At first, I thought, it was a very short time for each level but
if they put more time the game would be too easy and I lose interest.”

3.	 “They are good for fun and review.”

4.	 “I think it works to describe on object-oriented programming, and with this
game, is easy to understand each concept”.

5.	 “Music is pleasant and does not exceed a pleasant volume”.

435CHAPTER # 24 - PROMOTING SOFTWARE ENGINEERING CONCEPTS TO CHILDREN THROUGH A SERIOUS GAME

6.	 Experimentation

Software KIDS was put on experimentation, with the help of Punto México Conectado,
a national network of community digital training and education centers [28], and Epic
Queen, a non-profit organization, dedicated to guiding, include, and educate women and
girls in the technological sector [29]. Both organizations were chosen due to their impor-
tance in Zacatecas’ society, and their facilities and materials.

Experimentation was done first out the Guadalupe, Zacatecas office of PuntoMéxico Co-
nectado, with two children, and later in Epic Queen, with ten girls.

Sessions were divided into two parts: first, a small lesson about how and who created
the technology, this lesson lasted one hour approximately. This hour it was discussed
whom and how technology is created, children were asked about their interests, their
relation with technology, and their wishes when they got older. Also, during this session
importance of technology in daily life and society was shown, as well as how easy is to
create it. Later, they played with Software KIDS during 50 minutes and answered a ten-
minute questionnaire.

7.	 Results

Software KIDS is oriented to children older than eight years old, but during the expe-
rimentation, children of six to twelve years old also participated, as shown in Figure 5,
because organizations do not restrict age in their public invitations. A mentor supported
every child. Results are based on observation during experimentation and answered
questionnaires, and shown that 90% of children are very interested in technology, this
result is explained because they have already attended Punto México Conectado facili-
ties and Epic Queen Code Party.

Among the aspects that were important to children when using the serious game were the
sounds and the images of the application. Children qualified these aspects as positive.

A point that is important to emphasize is that children were asked which professions
they would probably choose. Some of the professions mentioned were a film director,
doctor, musician, teacher, veterinarian, lawyer and firefighter. Only one of the children
mentioned being an engineer. The children do not know about professions related to
technology, like software engineering and similar. In addition, some of the reasons for
which children attend events related to technology, as the ones organized by Punto Mé-
xico Conectado, are:

436 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

“I like to meet more girls”

“They told me about the event and I got interested in”

“I like technology and parties”

“I want to know more about technology”

“I knew about the event and told to come”

“My parents brought me”

Children were asked to grade each level in Software KIDS in terms of difficulty, easiness,
fun, and satisfaction. In Table 4 are shown votes obtained for each level.

As can be seen, level seven got the highest rates on unpleasant, tedious, entertaining,
and difficul criteria. Explanation to these results is the use of English words: if, while, for,
switch and case, because they do not know its translation, even when they are explained
in the help section.

Level one obtained the highest score in the entertaining and eases criteria. 100% of the
children completed more than six levels, 33.3% completed all levels and 33.3% could not
pass from level seven.

Table 4. Each level votes accordingly with its characteristic

Level
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 None

Favorite 3 1 2 1 2 2 1 2 2 3 0
Unpleasant 1 2 0 0 0 1 4 2 1 0 2
Difficult 1 1 1 1 0 0 5 2 1 0 0
Easy 8 2 2 3 3 3 0 2 2 3 0
Tedious 2 2 2 2 1 1 4 1 1 1 4
Entertaining 6 3 4 3 5 4 1 3 3 4 1

Children were asked to score Software KIDS. Results are shown in Figure 6. Average score
children gave to Software KIDS was 9/10, as shown in Figure 7. Comments are given to
game were:

“Games are fun”

437CHAPTER # 24 - PROMOTING SOFTWARE ENGINEERING CONCEPTS TO CHILDREN THROUGH A SERIOUS GAME

“Level seven is difficult”

“Every level is great, except for level 7”

“Levels are difficult, but are good”

“Some levels are fun and some other are frustrating”

Figure 6. Children age

Figure 7. Software KIDS scores

“The game is boring and I prefer another type of games”

“It helps us to develop ourselves as true hackers”

438 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

“I learned many things”

“I liked it very much”

“Levels are fantastic and a little difficult”

“There is not enough time”

Mentors also observed children performance. Each mentor supported two children.
Comments given by mentors are:

“High level of frustration: children began to complain about the game and required help
from mentor on levels 4, 6, 7 and 8”

“The game is great and it stimulates children interest on technology”

“Level seven is difficult”

“Children did not read instructions”

“Children did not concentrate”

“Players competition”

“Lack of English language knowledge”

“Lack of interest on game and game subjects”

“Children got excited and frustrated with difficult levels”

“Time is short”

“Some activities objective was not clear”

The last version of Software KIDS was added to GooglePlay, as shown in Figure 8 on No-
vember 24th, 2015, as free download on the account of the Autonomous University of
Zacatecas, to facilitate the installation process on mobile devices during test and debug
stage. To this date the total downloads are 246 and 40 are active.

The users have rated Software KIDS of the scale 1 to 5, obtaining 4.9/5. The information
gotten through Google Play, on June, are from the countries where Software KIDS has

439CHAPTER # 24 - PROMOTING SOFTWARE ENGINEERING CONCEPTS TO CHILDREN THROUGH A SERIOUS GAME

been downloaded. This information stated Mexico, United States, Colombia, Bolivia, Do-
minican Republic, Argentina, and Ecuador as the countries with more downloads.

Figure 8. Software KIDS on GooglePlay

8.	 Conclusions and future work

The children learned about the stages of the software development, new vocabulary
about SE and OOP, and the differences between objects, functions and attributes. Soft-
ware KIDS motivates students to keep trying despite their mistakes. At the end, the chil-
dren had a different perception of software development and SE, also they had a great
and entertaining learning experience.

Based on obtained results, the game will be improved and corrected. Most important im-
provements are language change on levels six and seven, and game difficulty decreasing
with time addition to levels seven and eight, given that 60 and 90 seconds is not enough
time to accomplish correct answers required.

According to the results obtained from children and students enrolled in the OOP cour-
se, it can be concluded that in Software KIDS there are highly OOP and SE specialized
terms that could be complicated for children to understand, while for students and
people who know about them, the game serves to review those concepts.

440 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Children under eight years old who interacted with Software KIDS needed the help of a
mentor to solve some doubts. However, they still were able to play it without major pro-
blems. From this finding, it was realized that Software KIDS should introduce difficulty
levels according to age, to avoid frustration, boredom and desertion.

In this way, promotion of SE and OOP was successful in the two sessions celebrated in
Punto México Conectado and Epic Queen.

Therefore, the development of Software KIDS aided children to have fun, entertaining
and a product to learn more about the SE and POO time.

As new institutions and organizations, nonprofit and governmental, in Mexico and
around the world, which aim to promote programming and learning about technology
development, are emerging, Software KIDS is an alternative choice to help start learning
basics of programming and problem solving related to programming.

Future work also considers migration to iOS, the most used operative system in serious
games related with programming teaching. Also is contemplated to have a website whe-
re children can play online to increase the number of users, mainly to use who have not
a mobile device.

Another goal to achieve in Software KIDS is to create an English version because this
language now represents 27.61% of the languages in serious games in Google Play, while
Spanish represents only 5.25%.

The last goal to achieve is the creation of a Software KIDS version oriented to college
students of the first semesters of information technology related careers.

Serious games cover a lot of areas of interest. The impact they are having is increasing
and a significant growth in the coming years is assumed. Creating serious games requires
a different approach than traditional game development, so new techniques and tools are
required to support the process of building them. All of these bring new challenges.

9.	 References

[1] 	 T. Mitamura, Y. Suzuki, and T. Oohori, “Serious games for learning programming lan-
guages,” Conf. Proc. - IEEE Int. Conf. Syst. Man Cybern., pp. 1812–1817, 2012.

[2] 	 P. Marquès, “El software educativo. J. Ferrés y P. Marqués,” Comun. Educ. y Nuevas
Tecnol., pp. 119–144, 1996.

441CHAPTER # 24 - PROMOTING SOFTWARE ENGINEERING CONCEPTS TO CHILDREN THROUGH A SERIOUS GAME

[3] 	 I. Paliokas, C. Arapidis, and M. Mpimpitsos, “PlayLOGO 3D: A 3D interactive video
game for early programming education: Let LOGO be a game,” in Proceedings - 2011
3rd International Conferenceon Games and Virtual Worlds for Serious Applications,
VS-Games 2011, 2011, pp. 24–31.

[4] 	 M. Zyda, “From Visual Simulation to Virtual Reality to Games,” Comput. IEEE Comput.
Soc., pp. 25–32, 2005.

[5] 	 D. Maniega Legarda, P. Lara Navarra, and P. Yánez Vilanova, “Uso de un videojuego
inmersivo online 3d para el aprendizaje del español el caso de ‘ Lost in la mancha,’”
Icono 14 Rev. científica Comun. y nuevas Tecnol., 2011.

[6]	 P. Yànez Vilanova, “Gamificación Educativa,” 2014. [Online]. Available: https://www.
youtube.com/watch?t=3697&v=vOl6HaP-uxM. [Accessed: 03-Dec-2015].

[7] 	 A. Derryberry, “Serious games : online games for learning,” Serious Games, no. 9, pp.
1–15, 2007.

[8] 	 G. Robles, “Una nueva herramienta ayuda a enseñar programación a niños desde los
seis años,” 2015. [Online]. Available: http://www.oei.es/divulgacioncientifica/?Una-
nueva-herramienta-ayuda-a. [Accessed: 16-May-2015].

[9] 	 I. Sommerville and M. I. A. Galipienso, Ingeniería del software. 2005.
[10] 	 J. A. Jiménez Murillo, E. M. Jiménez Hernández, and L. N. Alvarado Zamora, Funda-

mentos de Programación. Diagramas de flujo, Diagramas N-S, Pseudocódigo y Java.
Alfaomega, 2014.

[11] 	 K. Squire, “Video games in education,” Int. J. Intell. Games Simul., vol. 2, no. 1, pp.
49–62, 2003.

[12] 	 N. Ionel, “Critical analysis of the Scrum project management methodology,” Ann.
Univ. Oradea, Econ. Sci. Ser., vol. 17, no. 4, p. 435, 2008.

[13]	 Media Common Sense, “Common sense media,” 2015. [Online]. Available: https://
www.commonsensemedia.org/.

[14] 	 A. Dantas, M. Barros, and C. Werner, “A Simulation-Based Game for Project Manage-
ment Experiential Learning,” Proc. Sixt. Int. Conf. Softw. Eng. Knowl. Eng., pp. 19–24,
2004.

[15] 	 A. Jain and B. Boehm, “SimVBSE: Developing a game for value-based software engi-
neering,” in Software Engineering Education and Training, 2006, pp. 103–114.

[16] 	 E. Navarro, “An Educational, Game-Based Software Engineering Simulation Enviro-
ment,” 2010.

[17] 	 E. Navarro and A. van der Hoek, “Multi-site evaluation of SimSE,” Proc. 40th SIGCSE
Tech. Symp. Comput. Sci. Educ., vol. 41, no. 1, p. 326, 2009.

[18] 	 S. Ramirez-Rosales, S. Vazquez-Reyes, J. L. Villa-Cisneros, and M. De Leon-Sigg, “A
Serious Game to Promote Object Oriented Programming and Software Engineering
Basic Concepts Learning,” in 2016 4th International Conference in Software Enginee-
ring Research and Innovation (CONISOFT), 2016, pp. 97–103.

442 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

[19] 	 H. Partovi and A. Partovi, “‘Code Stars’ - Short Film,” 2013. [Online]. Available: https://
www.youtube.com/watch?v=dU1xS07N-FA. [Accessed: 29-Apr-2015].

[20] 	Hemendra, “5 Unbeatable Reasons Your Kid Should Be Coding,” 2014. [Online]. Avai-
lable: http://www.lifehack.org/articles/lifestyle/5-unbeatable-reasons-your-kid-
should-coding.html. [Accessed: 29-Mar-2015].

[21] 	 A. Rusu, R. Russell, R. Cocco, and S. DiNicolantonio, “Introducing object oriented
design patterns through a puzzle-based serious computer game,” Front. Educ. Conf.,
pp. 1–6, 2011.

[22] 	 T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
Second Edition, vol. 2nd. 2001.

[23] 	P. Arenas and J. Ricardo, “Modelo para la Motivación del Aprendizaje de la Progra-
mación utilizando Gamification,” 2014.

[24] 	E. Herranz and R. Colomo-Palacios, “La Gamificación como agente de cambio en la
Ingeniería del Software,” Rev. Procesos y Métricas, vol. 9, no. 2, pp. 30–56, 2012.

[25] 	P. Letelier, M. Canós, E. Sánchez, and M. Penadés, “Métodologías Ágiles en el Desa-
rrollo de Software,” Val. Val. España, pp. 1–8, 2003.

[26] 	Z. Khan, “Scrumban-Adaptive Agile Development Process: Using scrumban to im-
prove software development process,” no. May, 2014.

[27] 	 E. O. Navarro and A. van der Hoek, “SIMSE: An Interactive Simulation Game for Soft-
ware Engineering Education.,” Cate, 2004.

[28] 	México Digital, “Punto México Conectado,” 2015. [Online]. Available: http://pmc.gob.
mx. [Accessed: 01-Jan-2016].

[29] 	Epic Queen, “Epic Queen,” 2015. [Online]. Available: http://epicqueen.com.

443

Chapter # 25
Representation of teaching

and learning practices about
embedded systems using a

SEMAT kernel extension

1.	 Introduction

Embedded systems are computing electronic devices with a set of limited functions
to a specific use. Embedded systems are part of other products or systems such as
appliances or vehicles [1]. Embedded systems contain logic determining functioning
of these products. Today, embedded systems (ES) have a developing interest [2], the-
refore competent engineers are needed in the development and construction of such
systems. Such engineers should have technical and social competencies such as co-
llaborative work, leadership or creativity [3].

In the context of the development of embedded systems, we need to emphasize
competencies [3]. This area of knowledge has traditionally been taught through two
teaching strategies in higher education institutions: lectures and laboratory practi-
ces. In the first approach, professors are the main actors in the teaching-learning
process and they are responsible for introducing students to the basics of topics.
For the labs, professors rely on simulation projects, which apply concepts presen-
ted previously. However, there are many success stories focused on competencies
of methods or practices for teaching-learning of embedded systems (TLES for its
acronym) in the literature. Nevertheless, each author presents his method in a par-

Rubén Sánchez-Dams
Grupo de Investigación
Lenguajes
Computacionales
Universidad Nacional de
Colombia
Medellín, Colombia
rubendams@gmail.com

Alexander
Barón-Salazar
Grupo de Investigación
Galeras .Net
Universidad de Nariño
San Juan de Pasto,
Colombia abaron_98@
udenar.edu.co

María Clara
Gómez-Álvarez
Grupo de Investigación
Arkadius
Universidad de Medellín
Medellín, Colombia
mcgomez@udem.edu.co

444 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

ticular way, getting hard deals with different methods or its adoption. In search for
TLES strategies, we find a lack of mechanisms to monitor the evolution of the com-
petencies required by the engineer in the industrial environment. There is a lack of a
common framework to facilitate the teaching-learning process and the achievement
of learning goals.

Authors present a representation mechanism for processes of TLES with the purpose
of monitoring the development of competencies, initially described in [4]. The mecha-
nism is based on the SEMAT kernel as a universal framework for representing software
engineering practices, defining an extension to such kernel [5]. In [4] we were focused
on a methodology to extend the SEMAT kernel toward other disciplinary domains. In
this chapter we focus on exemplify the use of the representation mechanism pro-
posed for TLES processes. In addition, we propose specific validation criteria of the
proposal using a set TLSE methods found in the literature.

2.	 Theoretical Framework

2.1	 Concept of Practice

In software engineering context, practice is a common concept associated with diffe-
rent a structures and definitions [6, 7]. Capability Maturity Model Integration for Deve-
lopment (CMMI-DEV) defines a set of process areas; a group of practices forms each
area. Implementation of such practices satisfies a set of generic or specific goals [8].
In the case of Eclipse Process Framework Composer (EPFC), a practice is a documen-
ted approach to solving a set of common problems. This practice definition is related
to i) work products as a result of practice application, ii) tasks confirming the steps
of the practice development, iii) guidelines for practice implementation, and iv) roles
assumed by participants of a practice [9].

The OMG (Object Management Group) standard, Essence – Kernel and Language for
Software Engineering Methods–known as SEMAT kernel–, defines a software practice
as a repeatable approach with a specific goal [5]. A software practice is a practitioners’
guideline about what should be done for achieving this goal, expresses in terms of
expected results. Besides, such practice seeks to ensure the goal understanding and
the verification of obtained results by the work team. The practice elements proposed
by this standard are presented in the Figure 1.

Finally, Rational Unified Process (RUP) presents a practice like a concept with two
dimensions: horizontal –for dynamic aspects–, and vertical –for static aspects–. In

445CHAPTER # 25 - REPRESENTATION OF TEACHING AND LEARNING PRACTICES ABOUT EMBEDDED SYSTEMS USING A SEMAT KERNEL EXTENSION

fact, RUP can be defined like a framework of practices trying to solve software de-
velopment problems like dynamics requirements (uncontrolled change), ambiguous
communications and poor testing, among others [10].

2.2	 Teaching and Learning Practices

Teaching and learning practices include a set of guidelines and activities used by
professors to prepare prospective professionals and promote the development of
technical and social competencies in students [11].

In general, a teaching and learning practice has six main components shown in Fi-
gure 2.

METHODOLOGIST

developsdefines

LANGUAGE

AREA OF
CONCERN

CUSTOMER
SOLUTION
ENDEAVOR

KERNEL

uses describes

PRACTICE

has

WORK
PRODUCT

has

METHOD

has

ALPHA has NAME

STATE

STAKEHOLDERS
OPPORTUNITY

REQUIREMENTS
SOFTWARE SYSTEM

WORK
TEAM

WAY OF WORKING

EXPLORE POSSIBILITIES
INVOLVE THE STAKEHOLDERS

ENSURE STAKEHOLDER SATISFACTION
USE THE SYSTEM

UNDERSTAND THE REQUIREMENTS
SHAPE THE SYSTEM

IMPLEMENT THE SYSTEM
TEST THE SYSTEM

DELOY THE SYSTEM
OPERATE THE SYSTEM

PREPARE TO DO THE WORK
COORDINATE ACTIVITY

SUPPORT THE TEAM
TRACK PROGRESS
STOP THE WORK

ACTIVITY
SPACE

NAME

has

has

ACTIVITY

NAME

INPUT

OUTPUT COMPLETION
CRITERION has

NAME

has

CHECK
LIST

has

ITEM

Figure 1. Software practice according to Object Management Group [12].

446 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Figure 2. Teaching and Learning practice components

Teaching Strategies

Set of resources, techniques and procedures used by the professors for generating
meaningful learning in their students [13]. A systematic process of planning, design,
implementation and evaluation of teaching and learning activities is one of the ways
for archiving such meaningful learning. Additionally, the design of teaching strategies
should take into account promotes in the students the abilities of observation, analysis,
synthesis, hypothesis formulation and problem solving. In other words, the main goal
of teaching strategies is motivated the students to discover knowledge by themselves.

In this way, a student becomes the main actor of their learning process and the profes-
sor is just a guide or facilitator of this process.

Learning Goals

Learning goals refer to the cognitive activities that students should be able to do at the
end of the application of teaching strategies. Such goals are related to the knowledge,
abilities and attitudes expected by the professor in the curriculum planning and pre-
vious courses [14].

Content

Content is the set of subjects characterizing a phenomenon or event. In the context of a
course, content is the set of specific subjects described in the syllabus and correspond

447CHAPTER # 25 - REPRESENTATION OF TEACHING AND LEARNING PRACTICES ABOUT EMBEDDED SYSTEMS USING A SEMAT KERNEL EXTENSION

to the knowledge to share with the professor with their students for developing technical
competencies.

Support Platform

Support platform includes a set of technological tools for complement teaching-lear-
ning process. Such tools allow students learn and work by themselves, using the resou-
rces and activities available in these applications [15, 16].

Learning environment

Learning environment refers to the different contexts, physical locations and conditions
in which students learn. According to Forneiro, a learning environment comprises four
dimensions [17]:

a.	 Physical dimension: the physical space, structural conditions and objects in
the space where the learning process take place.

b.	 Functional Dimension: this dimension refers to the use of the space and the
type of activities carried out.

c.	 Temporal dimension: time assigned to the different learning activities.

d.	 Relational Dimension: such dimension is associated with the set of rela-
tionships established in the classroom between students-students and
professor-students.

Assessment

Assessment is a key component of the teaching-learning process [18]. Assessment pur-
pose is verifying if the students develop the competencies expected after the application
of the teaching practices. Such activity is traditionally carried out via written exams, but
other evaluation methods are appearing like group activities or ludic workshops [19, 20].

2.3	 Embedded Systems

Products related to automotive, industrial automation, network equipment, mobile de-
vices, and appliances, incorporate embedded systems [5, 6]. An embedded system inte-
grates hardware and software on a computer with a particular purpose [21]. The software

448 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

has the feature to directly access hardware resources. The Software determines the
logical behavior of the embedded system. However, logical functionality can be imple-
mented directly in hardware according to performance needs [22].

To design an ES, engineers take into account restrictions such as processing capacity,
ports, real time, or power consumption. Usually, the system architecture is limited ac-
cording to the proposed use of an embedded system; the system is built strictly with the
functionality of its purpose. Engineers use different approaches and co-design methods
to develop embedded systems [21] incorporating different levels of abstraction: a) soft-
ware components level, b) hardware blocks level, c) software/hardware integration level,
and d) system level [1].

2.4	 Essence Standard like a Theoretical Framework to
Practices Representation

SEMAT initiative provides a kernel and a language for creation, use and improvement of
software engineering methods. The kernel and the language are defined in the Essence
standard [5]. Such standard allows describing foundations of methods and practices of
software engineering, so they can be compared, evaluated, used, adapted, simulated,
measured and investigated by professionals, academics and researchers.

Essence standard defines three areas of concern: customer, solution and endeavor. The
areas “customer” and “solution” are related to problem and solution domain, respec-
tively. Meanwhile, the resources involving in the solution development are part of the
area “endeavor”. The kernel has these main constructs associated to a) things that work
with –alphas–, b) what are done–activity spaces– and c) capacity to perform the work–
competencies–. These constructs are discriminated according to these areas of concern.

Essence defines seven alphas with which progress and health of the most important ele-
ments of software engineering are measured. It is possible to define new sub-alphas to
describe particular situations. In Figure 2, these alphas and their relationship are shown.

Activity spaces are representations of essential things to do. Such representations pro-
vide descriptions of challenges that a team faces for the development, maintenance and
support of software systems. They also provide a description of things that the team will
take into account to meet these challenges. Examples of activities spaces are: explore
possibilities, understand requirements, and support the team for the areas of concern
customer, solution, and endeavor, respectively. Competencies are representations of the
key skills required by software engineers. As an example, in the area of concern endea-

449CHAPTER # 25 - REPRESENTATION OF TEACHING AND LEARNING PRACTICES ABOUT EMBEDDED SYSTEMS USING A SEMAT KERNEL EXTENSION

vor, the team should organize the work, because of the competencies Leadership and
Management are needed.

In relation to theory construction, a theory is a common conceptual framework to structure
and organize facts and knowledge in a concise and accurate manner [23]. Theories are use-
ful for facilitating the understanding of several phenomena and the knowledge exchange
among researchers and professionals. Theories main components are: i) constructs–es-
sential conceptualization of a specific domain–, and ii) propositions–structural and dy-
namic relationship between constructs means by equations, statements or laws– [23, 24].

Essence standard constitutes a framework for representing software engineering practices
and methods. For this reason, Essence is defined as a theoretical approach of software en-
gineering methods, identifying constructs and propositions for any method or practice [25].
Scalability, extensibility, and ease-of-use features of the kernel allows being applied for

Team

Software
system

Opportunity

C
us

to
m

er

Stakeholders

Requirements

Work

◄ set up to address

◄ fulfills

◄ performs and plans

focuses
►

scopes and
constraints ►

uses and
consum

es ►
◄

provides

supports►

es
ta

bl
is

h
to

 a
dd

re
ss

 ►

S
ol

ut
io

n
E

nd
ea

vo
r

Way-of-
working

Figure 3. Alphas and their relationships representing methods
and practices of other disciplines

3.	 Previous Work

In this section, the authors present some approaches about embedded systems tea-
ching and learning practices. Such approaches include activities like Arduino practices
and reality simulation of embedded system development industry, besides of lectures
and laboratory practices.

Chenard et al. describe a teaching methodology for embedded systems supported by
project-based learning [3]. Such methodology and the associated laboratory meets the

450 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

needs of learning wireless embedded systems. Additionally, they present a hardware
platform like a support for practice course projects of students. Mitsui et al. propose a
student experiment method for implement embedded systems [1]. This method helps
students to develop design competencies like system modeling and module design.

In relation to embedded systems course design, Nooshabadi and Garside present a course
design proposal seeking a learning environment that simulates the reality of embedded
systems development industry [26]. This proposal includes the integration of processors,
dedicated coprocessors and software for creating solutions for electronic devices like
smartphones and tablets. Meanwhile, Bareno describes a three-course program for em-
bedded systems teaching [27]. This program is based on software platforms for embedded
system development and hardware open source looking the promotion of student com-
petencies related to conception, design and implementation of this type of systems.

Similarly, Jamieson proposes an embedded systems course founded on project-based
learning and Arduino as an implementation platform [28]. Such platform exposes students
to complex problems and challenges for embedded systems development. Finally, Rover et
al. present a set of course of embedded systems designed using a learning model based
on cognition levels of Bloom’s taxonomy. This proposal includes the incorporation of ele-
ments like learning labs, learned lessons repository and new technologies [29].

The revision of previous work includes the construction of a pre-conceptual schema for each
proposal of embedded systems teaching. The goal is of this analysis is identifying the main
concepts (constructs) and relationships (propositions) of these TLPES. For example, the pre-
conceptual schema for the proposal of Nooshabadi and Garside is shown in Figure 4 [26].

EMBEDDED
SYSTEMS
COURSE

has

LEARNING
ENVIRONMENT

INDUSTRIAL
PRACTICE LABORATORY

has

EXERCISE

VIRTUAL QUIZ TUTORIAL STUDENT PROFESSOR

LEARNING GOAL

uses

PRIOR
KNOWLEDGE

COLLABORATIVE
WORK

DEVELOPMENT
BOARD

MANUAL GNU
DEVELOPMENT

TOOL

solves

PROBLEM

has

TASK CHALLENGEFEEDBACK

ONLINE
SUPPORT

EMULATOR has

Figure 4. Pre-conceptual schema summarizing Nooshabadi and Garside teaching and learning
proposal for embedded systems [26].

451CHAPTER # 25 - REPRESENTATION OF TEACHING AND LEARNING PRACTICES ABOUT EMBEDDED SYSTEMS USING A SEMAT KERNEL EXTENSION

4.	 An Extension of the Semat
Kernel for Representing
Teaching and Learning
Practices about Embedded
Systems

4.1	 Methodology

Methodology for extending the Semat kernel consists of two approaches. The first of
them is based on theory construction procedures proposed by Sjøberg, Dyba, Anda and
Hannay [20], and Ekstedt [21]. In the second approach, the authors use the tools of tra-
ditional scientific methodology to implement the procedures proposed in the first ap-
proach. Such approaches were organized in three phases: definition, construction, and
validation. Here, we present the table I where we summarize the relations of the two
approaches and phases.

Table 1. Methodological approaches to formulate the Semat extension

Phases Sjøberg steps approach [23]] Traditional scientific approaches

Definition

Define the constructs of the
theory

Systematic literature review [30]
Define the propositions of the
theory

Construction

Provide an explanation to justify
the theory

- Analyzing papers and their representation
in pre-conceptual schemas [31].
- Terminology approval of the concepts
identified in the pre-conceptual schemas

Determine the scope of the theory Defining criteria for the extension of the
SEMAT kernel

Validation Test the theory by empirical
studies

- Empirical application of the extension
model proposed
- Using executable pre-conceptual schemas
for representing and instantiating the main
constructs of a theory [25]

Authors based the methodology on two hypotheses: a) there is a set of essential, com-
mon constructs and propositions to all TLPES; and b) such constructs and propositions
can be discovered in a finite subset of items available in the literature. Such hypotheses
are proved to apply the methodology.

452 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

4.1.1	 Definition Phase

The systematic literature review was performed using the guidelines shown in [30]. In
this vein, the research question was asked: How embedded systems development are
taught? The query string in Google Scholar was ((teach or teaching) AND “embedded
system”), and 5,140 results were found. For analysis, a format for data extraction was
proposed; finally, the main concepts and relationships of the selected documents were
synthesized.

4.1.2	 Construction Phase

From the information extracted from the documents, the authors express the controlled
speech by using pre-conceptual schemas. With this technique, ambiguities, concepts
and relationships are clarified. Then, terminological homologation to extract common
constructs and propositions to analyzed documents is performed. Then, the scope of
the extension for representing TLES is defined, based on the SEMAT kernel. Scoping is
done with the classification of constructs–concepts–and propositions–relations–extrac-
ted from the terminological homologation, which meets the following criteria: a) Extend
the SEMAT Kernel; b) Orthogonality of Constructs; c) Generality; and d) Establishment of
States, Checklists and Descriptions of Concepts by analogies to the SEMAT kernel.

4.1.3	 Validation Phase

The first chosen approach is pragmatic validation through successfully representing di-
fferent TLES not used to generate the extension. Validation is left raised and involves the
use of the kernel and the extension to represent a set of TLES. Examples of representa-
tions of TLPES practices do not include in the systematic literature review are shown in
Section V of this chapter.

The second approach consists of using executable pre-conceptual schemas for represen-
ting the SEMAT kernel [25]. Figure 5 shows a pre-conceptual schema for Semat initiative un-
derstood as a general theory about software engineering. Then, we can define a set of cons-
tructs and propositions about Semat extension for representing TLES according to such
schema. In table II, we show five propositions related to the alphas Embedded system and
Learning Environment. Readers can see these relationships in Figure 6. Validation is to en-
sure that the propositions are present in a set of TLES not used to generate the extension.

To deepen in the methodology to extend the SEMAT kernel toward other disciplinary do-
mains, we recommend readers to see [4].

453CHAPTER # 25 - REPRESENTATION OF TEACHING AND LEARNING PRACTICES ABOUT EMBEDDED SYSTEMS USING A SEMAT KERNEL EXTENSION

4.2	 SEMAT extension definition for teaching and learning
practices about embedded systems

For this extension, an exception to the use of the kernel is raised: the object of stu-
dy is set; the Software System alpha is established as a construct within a broader
alpha called Embedded System, which it is related with another construct called
Hardware System. Embedded System Alpha replaces the Software System in terms
of its relationships with the other alphas. In addition, a new alpha called Learning
Environment is proposed, taking into account its importance in the teaching and
learning process–criteria of orthogonality of constructs of the construction phase;
such environment includes the space, the rules of use of this space, and the rela-
tionships established in the classroom. The learning environment aims to study the
embedded system and defines the work of teaching and learning, which is executed
by the team representing the professor and students. In turn, the team participates
in the learning environment. In addition, authors identified states, verified alphas,
and proposed a work product to the learning environment. Figure 6 shows the rela-
tionships among alphas in the extension. Figure 7 shows the alphas and their sub-
alphas. Figure 8 shows the card for the Learning environment alpha. Table III shows
the states of the Embedded System alpha. Finally, table IV shows a consolidated of
the alpha and sub-alphas.

Figure 5. The theoretical pre-conceptual schema for Semat initiative [25].

454 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Table 2. Some constructs and propositions of SEMAT extension for representing TLES

THEORY
PROPOSITION
CONSTRUCT RELATIONSHIP
Name Value Arche-type Class Name
Alpha Team Endeavor

participates
Alpha Learning Environment Solution
Alpha Learning Environment Solution

delimits
Alpha Work Endeavor
Alpha Embedded system Solution

object of study
Alpha Learning Environment Solution
Alpha Embedded system Solution

fulfills
Alpha Requirements Solution
Alpha Work Endeavor

changes
Alpha Embedded system Solution

Embedded
system

Team

Learning
environmentRequirements

Work
◄ performs and plans

scopes and
constraints ►

◄
participates

S
ol

ut
io

n
E

nd
ea

vo
r

Way-of-
working

Figure 6. Relations among alphas with the proposed extension

Learning
Environment

Learning
Objective

Learning
Content

Teaching
StrategyWork

Embedded
System

Software
System

Hardware
System

Learning
Activity

 Way-of-
 Working

Figure 7. Sub-alphas of the proposed extension

455CHAPTER # 25 - REPRESENTATION OF TEACHING AND LEARNING PRACTICES ABOUT EMBEDDED SYSTEMS USING A SEMAT KERNEL EXTENSION

Figure 8. Learning environment alpha card

Table 3. States of learning environment alpha

State Description
Conceived The agreed need for a learning environment
Bounded The purpose and contents of the learning environment are clear
Designed The learning environment is fully described by modeling mechanisms
In Action The learning environment is usable and allows evaluation

Feedback The actors in the teaching-learning process identifies opportunities to improve
the learning environment

Finalized The learning environment meets the agreed requirements

Table 4. Alphas proposed

Alpha name Sub-alpha Description States

Learning
environment An space for developing learning activities

- Conceived
- Bounded
- Designed
- In Action
- Feedback
- Finalized

Learning Goal x
Learning objectives correspond to what the
student should be able to demonstrate at the
end of a process of teaching and learning

- Defined
- Presented
- Addressed
- Assessed
- Completed

Learning
Content x Set of concepts that are addressed in a training

process

- Defined
- Bounded
- Ready
- Presented
- Assessed

This table continues on the following page ––––––>

456 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

Alpha name Sub-alpha Description States

Hardware
System x

Electronic system for the generation,
transmission, handling, processing or storage of
analog or digital signals

- Architecture
selected
- Demonstrable
- Usable
- Made and
integrated
- Tuned
- Retired

Learning
Activity x Actions or tasks performed by the student to

learn content and develop competencies

- Conceived
- Designed
- Made
- Completed
- Assessed
- feedback

Teaching
Strategy x Procedures or resources used by professors to

promote meaningful learning

- Conceived
- Bounded
- Planned /
Designed
- Applied
- Assessed
- Feedback

We propose a new space activity named “do learning activity” in the area of interest en-
deavor. The other activity spaces of SEMAT kernel meet the needs of TLES. In the Figure
9, it shows the new activity space.

Prepare to do
the Work

Coordinate
Activity

Support the
Team

Stop the
Work

Track
Progress

En
de

av
or

Do learning
Activity

Figure 9. Activity spaces “Do learning activity”

5.	 Representation of methods or practices
for teaching/learning of embedded
systems

In this section, we present two methods of TLES. These methods are described in papers
that were found in the literature with the same search string presented in the item “De-
finition Phase” of the methodology. The papers represented with extension are different
from those used for generating the representation mechanism proposed in this chapter.
Here we present a representation of each method using the proposed extension of the
SEMAT kernel for representing teaching and learning practices about embedded systems.

457CHAPTER # 25 - REPRESENTATION OF TEACHING AND LEARNING PRACTICES ABOUT EMBEDDED SYSTEMS USING A SEMAT KERNEL EXTENSION

5.1	 The Use of Video-Game Devices as a Motivation
for Learning Embedded Systems Programming
(VG-TES)

VG-TES is an approach in use since 2004 at the University of Granada, Spain, where por-
table video game consoles are used as the platform to teach embedded systems pro-
gramming. Besides being based on embedded processors and custom hardware (video
processors, media codecs, etc.) and incorporating more devices than the average deve-
lopment boards at a lower price, the most important feature of these consumer electro-
nics is the attraction that many students feel with them, having spent pleasant times on
them with relatives and friends. Another advantage of using a video game console as the
development platform is that, because of the high sales volume of the videogame mar-
ket, many students will probably have already purchased or would like to purchase one
for recreational purposes, or have easy access to one via a relative or friend. In this work,
the representation of a method for teaching and learning embedded systems described
VG-TES using the Semat kernel extension is explored.

1.	 Practice VG-TES

The VG-TES method proposes conducting “laboratory practices” on a course of em-
bedded systems to obtain as a final product an embedded system in the form of video
game. VG-TES method like a Semat practice is represented in Figure 10.

VG-TES

Learning
Environment

Learning
Goal

Learning
Content

Teaching
Strategy

Work

Embedded
System

Software
System

Hardware
System

Learning
Activity

 Way-of-
 Working

Program in
assembler code

C Runtime
Environment

Function to
manage data

structures

System calls via
stub functions

Final project
(video game)

Figure 10. Graphical syntax of the VG-TES practice

458 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

2.	 Monitoring practice by alphas

Each of the sub-alphas and alphas that are part of the extension are instantiated in ele-
ments of the VG-TES proposal. This is a way of demonstrating that the elements that are
part of a practice of teaching and learning embedded systems can be represented by
elements that are part of the kernel and the Semat extension. Thus, it is possible to ex-
ploit the advantages of the Semat kernel to monitor the health and progress of the cons-
truct of the embedded system and the teaching process. Table V shows the elements,
that instantiate the sub-alphas which is part of the extension, are identified.

3.	 Practice activities

The activities proposed by VG-TES integrate activity spaces that are part of the Semat
kernel. This integration allows defining, monitoring and evaluating the process proposed
by VG-TES as practice for teaching embedded systems. Relations between VG-TES practi-
ce, activity spaces, activities and work products are shown in Figure 11.

Table 5. Alphas, sub-alphas and instances in VG-TES

Alpha Sub-alpha Instance in VG-TES

Learning
Environment

Learning Goal

- Identify the features that distinguish embedded systems
from general-purpose computing systems
- Select, configure, and use embedded systems debugging
and development tools
- Develop firmware for simple embedded systems
- Develop peripheral drivers at different levels of abstraction
- Optimize embedded software to maximize its performance
and minimize its power consumption

Learning Content

- Features of the embedded systems
- Embedded software
- Embedded systems debugging
- Embedded systems development tools
- Firmware for embedded systems
- Peripheral drivers

Embedded
System

Software System - Video Game
Hardware System - Video Game Console

Work Learning activity
- Lecture session
- Laboratory session
- Laboratory assignments
- Homework

Way of
working Teaching Strategy

- Introduction to Platform and Toolset
- Development of a Basic C Runtime Environment
- Device Handling
- System Calls
- Final Project

459CHAPTER # 25 - REPRESENTATION OF TEACHING AND LEARNING PRACTICES ABOUT EMBEDDED SYSTEMS USING A SEMAT KERNEL EXTENSION

Figure 11. VG-TES practices, Activity Spaces, Activities, and work product.

5.2	 Definition of the TLPES Structure Learning
of Embedded System Design, Simulation and
Implementation: A Technical Approach

“Learning embedded systems based on simulation” is a teaching-learning method of em-
bedded systems based on the experience of the authors in the Federal University of Te-
chnology in Nigeria. Such method of teaching and learning is based on the use of Com-
puter Aided Design (CAD) tools for circuit simulation. The method is aimed at embedded
systems introductory courses. Authors propose the use of a virtual microcontroller-based
circuit experiments method. They use proprietary brands in microcontroller and the CAD
tool. In the method, authors use a paradigm of teaching/learning of “learn-while-doing”.

1.	 Method of learning embedded systems based on simulation

In the methodology, proposed activities jointly address the software/hardware develo-
pment, due to the low complexity of the projects presented in the original article. But
for clarity, we separate the activities of software and hardware in the representation
made with the kernel Semat and the proposed extension. In the article, authors do not
mention learning contents or objectives of a course of embedded systems where the
method is applied. Accordingly, the representation of the methodology lacks the sub-
alphas “Learning Goal” and “Learning Content”. “Learning embedded systems based on
simulation” method was divided in two practices “Maintaining course” and “ES building

460 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

based on simulation”. Then in Figure 12, we represent the corresponding alphas, sub-
alphas and work products associated with the practices.

Figure 12. Graphical syntax of the “Learning embedded systems based on simulation” method

2.	 Monitoring practice by alphas

Table 6 shows the elements, that instantiate the sub-alphas which is part of the exten-
sion, are identified. Instances are used for tracking laboratory practices.

Table 6. Alphas, sub-alphas and instances in “learning embedded systems based on simulation” method

Alpha Sub-alpha Instance in VG-TES

Embedded System

Software System - Source code of Learning activities

Hardware System - Circuits of Learning activities

- Electronic device enclosure of Learning activities

Work Learning activity

- LED chasing and 3x3x3 LED Cube
- LCD module displays message
- Microcontroller-based digital thermometer
- 7-segment display countdown timer
- Analog-digital converter (ADC) module

461CHAPTER # 25 - REPRESENTATION OF TEACHING AND LEARNING PRACTICES ABOUT EMBEDDED SYSTEMS USING A SEMAT KERNEL EXTENSION

3.	 Practice activities

The development process of embedded system is divided into four stages: a) circuit de-
sign and simulation, b) system demonstration circuit, c) implementation Circuit, and d)
packaging. Relations between practices, activity spaces, activities and work products are
shown in Figure 13.

Figure 13. Activity Spaces, activities, and work products of the “Learning embedded
systems based on simulation” method

462 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

6.	 Conclusions

In this chapter is presented, for the discussion of the academic community, a
methodology to extend the SEMAT kernel. The Essence standard could be used as a
framework to represent the teaching and learning practices about embedded systems.
A prototype of the kernel extension was achieved from a limited set of bibliographic
sources of the universe of teaching practices available for embedded systems. In the
exercise, it was identified that the constructs and propositions of the SEMAT kernel
are sufficiently general, allowing the representation of the new domain with the addi-
tion of a few extensions. In addition, new constructs and propositions of the propo-
sed extension are in the rest of the twenty-eighth papers analyzed. In addition, the
authors propose to study the structure of SEMAT kernel as a general framework for
the representation of practices and methods from other discipline domains than the
software engineering domain, like teaching and learning practices about embedded
systems. The results demonstrate the scalability, extensibility and ease-of-use of Es-
sence for representation, usage and improvement of practices and methods of other
disciplines.

The SEMAT kernel extension presented for representing TLES allowed to verify the two
hypotheses related to the existence of a common set of constructs and propositions
to different TLES, extracted from scientific papers that describe teaching and learning
practices about embedded systems. However, this verification is biased because it is
necessary to broaden the base or universe of documents reviewed, to verify empirica-
lly the potential of this extension to represent any TLPES.

As lines of future work, we propose:

•• Increase the scope of the systematic review of the literature on teaching and lear-
ning practices about embedded systems based on increasing the number papers
to review from recognized databases like as IEEE or ACM and using other search
strings that allow refining results.

•• Analyze the “competency” construct, which is part of the domain of teaching-
learning process, and it refers to the competencies to promote students as well
as the competencies required to lead the teaching process. In the first case, you
can define indicators to verify the achievement of competency by monitoring the
level of achievement of the abilities associated. Another alternative is to measure
the progress of the teaching-learning process through the states of other sub-
alphas as Learning Objective.

463CHAPTER # 25 - REPRESENTATION OF TEACHING AND LEARNING PRACTICES ABOUT EMBEDDED SYSTEMS USING A SEMAT KERNEL EXTENSION

7.	 References

[1] 	 H. Mitsui, H. Kambe, and H. Koizumi, “Use of Student Experiments for Teaching Em-
bedded Software Development Including HW/SW Co-Design,” IEEE Transactions on
Education, vol. 52, no. 3, pp. 436–443, Aug. 2009.

[2] 	 S. Ordóñez, “Empresas y cadenas de valor en la industria electrónica en México,”
Economía UNAM, vol. 2, no. 5, pp. 90–111, 2005.

[3] 	 J.-S. Chenard, Z. Zilic, and M. Prokic, “A Laboratory Setup and Teaching Methodology
for Wireless and Mobile Embedded Systems,” IEEE Transactions on Education, vol.
51, no. 3, pp. 378–384, Aug. 2008.

[4] 	 R. Sánchez-Dams, A. Barón-Salazar, and M. C. Gómez-Álvarez, “An Extension of the
SEMAT Kernel for Representing Teaching and Learning Practices about Embedded
Systems,” in 2016 4th International Conference in Software Engineering Research
and Innovation (CONISOFT), 2016, pp. 39–46.

[5] 	 OMG Group, “Kernel and Language for Software Engineering Methods (Essence).”
02-Nov-2014.

[6] 	 J. G. Guzmán, D. Martín, J. Urbano, and A. de Amescua, “Practical experiences in mo-
delling software engineering practices: The project patterns approach,” Software
Qual J, vol. 21, no. 2, pp. 325–354, Jul. 2012.

[7] 	 C. Passos, D. S. Cruzes, T. Dyb\a a, and M. Mendonça, “Challenges of Applying Ethno-
graphy to Study Software Practices,” in Proceedings of the ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement, New York, NY,
USA, 2012, pp. 9–18.

[8] 	 CMMI Product Team, “CMMI for Development, Version 1.3,” Software Engineering Pro-
cess Management Program, Nov. 2010.

[9] 	 The Eclipse Foundation. (2014). EPF Practices, Eclipse Process Framework Composer.
[Online]. Available: http://epf.eclipse.org/wikis/epfpractices/index.htm.

[10] 	Rational Unified Process: Best practices for software development teams.
[Online]. Available: https://www.ibm.com/developerworks/rational/library/
content/03July/1000/1251/1251_bestpractices_TP026B.pdf

[11] 	 P. Grossman, C. Compton, D. Igra, M. Ronfeldt, E. Shahan, and P. Williamson, “Tea-
ching practice: A cross-professional perspective,” Teachers College Record, vol. 111,
no. 9, pp. 2055–2100, 2009.

[12] 	 C. Zapata and I. Jacobson, “A first course in software engineering methods and
theory,” Dyna, vol. 81, no. 183, pp. 231–241, 2014.

[13] 	 P. E. G. Férez, “Un acercamiento al trabajo colaborativo,” Revista Iberoamericana de
Educación, vol. 35, no. 2, 2005.

[14] 	 R. M. Harden, “Learning outcomes and instructional objectives: is there a differen-
ce?” Medical teacher, vol. 24, no. 2, pp. 151–155, 2002.

464 SOFTWARE ENGINEERING: METHODS, MODELING, AND TEACHING

[15] 	 Garcia, A., M. Daneri, Investigación e innovación en el conocimiento educativo ac-
tual, En R. I. Roig y J.E. Blasco (Coord.),2008.

[16] 	 H. Chen and K. Damevski, “A teaching model for development of sensor-driven mo-
bile applications,” in Proceedings of the 2014 conference on Innovation & techno-
logy in computer science education, 2014, pp. 147–152.

[17] 	 M. L. I. Forneiro, “Observación y evaluación del ambiente de aprendizaje en edu-
cación infantil: dimensiones y variables a considerar,” Revista Iberoamericana de
educación, no. 47, pp. 49–70, 2008.

[18] 	 A. M. Vivar Quintana, A. B. González Rogado, A. B. Ramos Gavilán, I. R. Martín, M.
Ascensión, R. Esteban, T. A. Zorrila, and J. F. Martín Izard, “Application of rubric in
learning assessment: a proposal of application for engineering students,” in Proce-
edings of the First International Conference on Technological Ecosystem for Enhan-
cing Multiculturality, 2013, pp. 441–446.

[19] 	 M. Spellings, A test of leadership: Charting the future of US higher education. Wash-
ington DC: US Department of Education, 2006.

[20] 	D. Golden, “Colleges, accreditors seek better ways to measure learning,” Wall Street
Journal, pp. 738027–298, 2006.

[21] 	 P. Marwedel, Embedded System Design: Embedded Systems Foundations of Cyber-
Physical Systems, Edición: 2. Dordrecht: Springer, 2010.

[22] 	 J. Dimitrov, “Developing semantics of Verilog HDL in formal compositional design of
mixed hardware/software system,” PhD thesis, Software Technology Research Labo-
ratory, De Montfort University, 2002.

[23] 	D. I. K. Sjøberg, T. Dybå, B. C. Anda, and J. E. Hannay, “Building theories in software
engineering,” in Guide to advanced empirical software engineering, F. Shull, J. Sin-
ger, and D. I. K. Sjøberg, Eds. London: Springer, 2008, pp. 312–336.

[24] 	M. Ekstedt, “An empirical approach to a general theory of software (engineering),”
in 2013 2nd SEMAT Workshop on a General Theory of Software Engineering (GTSE),
2013, pp. 23–26.

[25] 	C. M. Zapata-Jaramillo, “An executable pre-conceptual schema for a software en-
gineering general theory,” in Software Engineering: Methods, Modeling, vol. 3, C. M.
Zapata-Jaramillo and L. F. Castro-Rojas, Eds. Centro Editorial de la Facultad de Mi-
nas, 2014, pp. 3–7.

[26] 	S. Nooshabadi and J. Garside, “Modernization of teaching in embedded systems
design-an international collaborative project,” IEEE Transactions on Education, vol.
49, no. 2, pp. 254–262, May 2006.

[27] 	 C. I. C. Bareno, “Teching/Learning Methods for Embedded Systems Using Copyleft
Hardware,” IEEE Latin America Transactions, vol. 9, no. 4, pp. 503–509, 2011.

[28] 	P. Jamieson, “Arduino for teaching embedded systems. are computer scientists and
engineering educators missing the boat?” Proc. FECS, pp. 289–294, 2010.

465CHAPTER # 25 - REPRESENTATION OF TEACHING AND LEARNING PRACTICES ABOUT EMBEDDED SYSTEMS USING A SEMAT KERNEL EXTENSION

[29] 	D. T. Rover, R. A. Mercado, Z. Zhang, M. C. Shelley, and D. S. Helvick, “Reflections on
teaching and learning in an advanced undergraduate course in embedded sys-
tems,” IEEE Transactions on Education, vol. 51, no. 3, pp. 400–412, 2008.

[30] 	B. Kitchenham, “Procedures for performing systematic reviews,” Keele, UK, Keele
University, vol. 33, no. 2004, pp. 1–26, 2004.

[31] 	 C. M. Zapata-Jaramillo, A. Gelbukh, and F. Arango-Isaza, “Pre-conceptual schema: A
conceptual-graph-like knowledge representation for requirements elicitation,” in
MICAI 2006: Advances in Artificial Intelligence, Springer, 2006, pp. 27–37.

Este libro se terminó de diseñar
el 22 de mayo de 2017

en la Unidad de Comunicaciones y Protocolo de la
Universidad de San Buenaventura, sede Bogotá

Diseño e impresión
Unidad de Comunicaciones y Protocolo de la Universidad de San Buenaventura, sede Bogotá

EDITORIAL
BONAVENTURIANA

9 789588 928494

